Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Jun 1;105(6):677–699. doi: 10.1085/jgp.105.6.677

Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells

PMCID: PMC2216953  PMID: 7561739

Abstract

Dog red cell membranes contain two distinct volume-sensitive transporters: swelling-activated K-Cl cotransport and shrinkage- activated Na/H exchange. Cells were prepared with intracellular salt concentration and weight percentage of cell water (%cw) varied independently by transient permeabilization of the cell membrane to cations. The dependence of transporter-mediated Na and K influxes upon %cw and upon extracellular salt concentration (c(ext)) was measured in cells so prepared. It was found that the critical value of %cw at which transporters are activated, called the set point, is similar for the two transporters, and that the set points for the two transporters decrease similarly with increasing extracellular salt concentration. These findings suggest a common mechanism of regulation of these two transporters. Cellular Na, K, and Cl concentrations were measured as functions of %cw and c(ext). Using these data together with data from the literature for other solute concentrations, empirical expressions were developed to describe the dependence of the intracellular concentrations of all significant small molecule electrolytes, and therefore the intracellular ionic strength, upon %cw and c(ext). A mechanistic model for the dependence of the set point of an individual transporter upon intracellular ionic strength is proposed. According to this model, the set point represents a critical extent of association between the transporter and a postulated soluble regulatory protein, called regulator. Model functions are presented for the calculation of the thermodynamic activity of regulator, and hence extent of regulator- transporter association, as a function of total intracellular protein concentration (or %cw) and ionic strength. The experimentally observed dependence of set point %cw on c(ext) are simulated using these functions and the empirical expressions described above, together with reasonable but not uniquely determined values of model parameters.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adragna N. C., Tosteson D. C. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells. J Membr Biol. 1984;78(1):43–52. doi: 10.1007/BF01872531. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 1982 Dec 7;21(25):6545–6552. doi: 10.1021/bi00268a034. [DOI] [PubMed] [Google Scholar]
  3. Attri A. K., Minton A. P. An automated method for determination of the molecular weight of macromolecules via sedimentation equilibrium in a preparative ultracentrifuge. Anal Biochem. 1983 Aug;133(1):142–152. doi: 10.1016/0003-2697(83)90235-x. [DOI] [PubMed] [Google Scholar]
  4. Benesch R., Benesch R. E. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature. 1969 Feb 15;221(5181):618–622. doi: 10.1038/221618a0. [DOI] [PubMed] [Google Scholar]
  5. Bisognano J. D., Dix J. A., Pratap P. R., Novak T. S., Freedman J. C. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells. J Gen Physiol. 1993 Jul;102(1):99–123. doi: 10.1085/jgp.102.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunn H. F. Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science. 1971 Jun 4;172(3987):1049–1050. doi: 10.1126/science.172.3987.1049. [DOI] [PubMed] [Google Scholar]
  7. Chatelier R. C., Minton A. P. Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins. Biopolymers. 1987 Apr;26(4):507–524. doi: 10.1002/bip.360260405. [DOI] [PubMed] [Google Scholar]
  8. Dunham P. B., Klimczak J., Logue P. J. Swelling activation of K-Cl cotransport in LK sheep erythrocytes: a three-state process. J Gen Physiol. 1993 May;101(5):733–765. doi: 10.1085/jgp.101.5.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths W. J., Fitzpatrick M. The effect of age on the creatine in red cells. Br J Haematol. 1967 Mar;13(2):175–180. doi: 10.1111/j.1365-2141.1967.tb08728.x. [DOI] [PubMed] [Google Scholar]
  10. Haas M., McManus T. J. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions. J Gen Physiol. 1985 May;85(5):649–667. doi: 10.1085/jgp.85.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hempling H. G., Stewart C. C., Gasic G. The effect of exogenous ATP on the electrolyte content of TA3 ascites tumor cells. J Cell Physiol. 1969 Apr;73(2):133–140. doi: 10.1002/jcp.1040730207. [DOI] [PubMed] [Google Scholar]
  12. Jennings M. L., al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol. 1990 Jun;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Minton A. P., Colclasure G. C., Parker J. C. Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10504–10506. doi: 10.1073/pnas.89.21.10504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
  15. Motais R., Guizouarn H., Garcia-Romeu F. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Biochim Biophys Acta. 1991 Oct 10;1075(2):169–180. doi: 10.1016/0304-4165(91)90248-f. [DOI] [PubMed] [Google Scholar]
  16. Parker J. C., Colclasure G. C. Actions of thiocyanate and N-phenylmaleimide on volume-responsive Na and K transport in dog red cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C418–C421. doi: 10.1152/ajpcell.1992.262.2.C418. [DOI] [PubMed] [Google Scholar]
  17. Parker J. C., Colclasure G. C., McManus T. J. Coordinated regulation of shrinkage-induced Na/H exchange and swelling-induced [K-Cl] cotransport in dog red cells. Further evidence from activation kinetics and phosphatase inhibition. J Gen Physiol. 1991 Nov;98(5):869–880. doi: 10.1085/jgp.98.5.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker J. C. In defense of cell volume? Am J Physiol. 1993 Nov;265(5 Pt 1):C1191–C1200. doi: 10.1152/ajpcell.1993.265.5.C1191. [DOI] [PubMed] [Google Scholar]
  19. Parker J. C., McManus T. J., Starke L. C., Gitelman H. J. Coordinated regulation of Na/H exchange and [K-Cl] cotransport in dog red cells. J Gen Physiol. 1990 Dec;96(6):1141–1152. doi: 10.1085/jgp.96.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parker J. C. Ouabain-insensitive effects of metabolism on ion and water content of red blood cells. Am J Physiol. 1971 Jul;221(1):338–342. doi: 10.1152/ajplegacy.1971.221.1.338. [DOI] [PubMed] [Google Scholar]
  21. Parker J. C., Snow R. L. Influence of external ATP on permeability and metabolism of dog red blood cells. Am J Physiol. 1972 Oct;223(4):888–893. doi: 10.1152/ajplegacy.1972.223.4.888. [DOI] [PubMed] [Google Scholar]
  22. Parker J. C. Urea alters set point volume for K-Cl cotransport, Na-H exchange, and Ca-Na exchange in dog red blood cells. Am J Physiol. 1993 Aug;265(2 Pt 1):C447–C452. doi: 10.1152/ajpcell.1993.265.2.C447. [DOI] [PubMed] [Google Scholar]
  23. Prakash V., Loucheux C., Scheufele S., Gorbunoff M. J., Timasheff S. N. Interactions of proteins with solvent components in 8 M urea. Arch Biochem Biophys. 1981 Sep;210(2):455–464. doi: 10.1016/0003-9861(81)90209-5. [DOI] [PubMed] [Google Scholar]
  24. Ross P. D., Briehl R. W., Minton A. P. Temperature dependence of nonideality in concentrated solutions of hemoglobin. Biopolymers. 1978 Sep;17(9):2285–2288. doi: 10.1002/bip.1978.360170920. [DOI] [PubMed] [Google Scholar]
  25. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  26. Sarkadi B., Parker J. C. Activation of ion transport pathways by changes in cell volume. Biochim Biophys Acta. 1991 Dec 12;1071(4):407–427. doi: 10.1016/0304-4157(91)90005-h. [DOI] [PubMed] [Google Scholar]
  27. Starke L. C., Jennings M. L. K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1. Am J Physiol. 1993 Jan;264(1 Pt 1):C118–C124. doi: 10.1152/ajpcell.1993.264.1.C118. [DOI] [PubMed] [Google Scholar]
  28. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65. doi: 10.1146/annurev.bb.22.060193.000331. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES