Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Jun 1;105(6):815–835. doi: 10.1085/jgp.105.6.815

Contrast gain control in the lower vertebrate retinas [published erratum appears in J Gen Physiol 1995 Aug;106(2):following 388]

PMCID: PMC2216959  PMID: 7561745

Abstract

Control of contrast sensitivity was studied in two kinds of retina, that of the channel catfish and that of the kissing gourami. The former preparation is dominantly monochromatic and the latter is bichromatic. Various stimuli were used, namely a large field of light, a spot- annulus configuration and two overlapping stimuli of red and green. Recordings were made from horizontal, amacrine, and ganglion cells and the results were analyzed by means of Wiener's theory, in which the kernels are the contrast (incremental) sensitivity. Modulation responses from horizontal cells are linear, in that the waveform and amplitude of the first-order kernels are independent of the depth of modulation. In the N (sustained) amacrine and ganglion cells, contrast sensitivity was low for a large modulation input and was high for a small modulation input, providing an example of contrast gain control. In most of the cells, the contrast gain control did not affect the dynamics of the response because the waveform of the first-order kernels remained unchanged when the contrast sensitivity increased more than fivefold. The signature of the second-order kernels also remained unchanged over a wide range of modulation. The increase in the contrast sensitivity for the second-order component, as defined by the amplitude of the kernels, was much larger than for the first-order component. This observation suggests that the contrast gain control proceeded the generation of the second-order nonlinearity. An analysis of a cascade of the Wiener type shows that the control of contrast sensitivity in the proximal retinal cells could be modeled by assuming the presence of a simple (static) saturation nonlinearity. Such a nonlinearity must exist somewhere between the horizontal cells and the amacrine cells. The functional implications of the contrast gain control are as follows: (a) neurons in the proximal retina exhibit greater sensitivity to input of lower contrast; (b) saturation of a neuronal response can be prevented because of the lower sensitivity for an input with large contrast, and (c) over a large range of modulation depths, the amplitude of the response remains approximately constant.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benardete E. A., Kaplan E., Knight B. W. Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis Neurosci. 1992 May;8(5):483–486. doi: 10.1017/s0952523800004995. [DOI] [PubMed] [Google Scholar]
  2. Chappell R. L., Naka K., Sakuranaga M. Dynamics of turtle horizontal cell response. J Gen Physiol. 1985 Sep;86(3):423–453. doi: 10.1085/jgp.86.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Korenberg M. J., Sakai H. M., Naka K. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. J Neurophysiol. 1989 Jun;61(6):1110–1120. doi: 10.1152/jn.1989.61.6.1110. [DOI] [PubMed] [Google Scholar]
  5. Lawton T. B., Tyler C. W. On the role of X and simple cells in human contrast processing. Vision Res. 1994 Mar;34(5):659–667. doi: 10.1016/0042-6989(94)90020-5. [DOI] [PubMed] [Google Scholar]
  6. Meister M., Pine J., Baylor D. A. Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods. 1994 Jan;51(1):95–106. doi: 10.1016/0165-0270(94)90030-2. [DOI] [PubMed] [Google Scholar]
  7. Mizunami M., Tateda H., Naka K. Dynamics of cockroach ocellar neurons. J Gen Physiol. 1986 Aug;88(2):275–292. doi: 10.1085/jgp.88.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Naka K. I., Chan R. Y., Yasui S. Adaptation in catfish retina. J Neurophysiol. 1979 Mar;42(2):441–454. doi: 10.1152/jn.1979.42.2.441. [DOI] [PubMed] [Google Scholar]
  9. Naka K. I., Itoh M. A., Chappell R. L. Dynamics of turtle cones. J Gen Physiol. 1987 Feb;89(2):321–337. doi: 10.1085/jgp.89.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Naka K. I., Rushton W. A. S-potentials from luminosity units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):587–599. doi: 10.1113/jphysiol.1966.sp008003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Naka K., Chappell R. L., Sakuranaga M., Ripps H. Dynamics of skate horizontal cells. J Gen Physiol. 1988 Dec;92(6):811–831. doi: 10.1085/jgp.92.6.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Naka K., Otsuka T. Morphological and functional identifications of catfish retinal neurons. II. Morphological identification. J Neurophysiol. 1975 Jan;38(1):72–91. doi: 10.1152/jn.1975.38.1.72. [DOI] [PubMed] [Google Scholar]
  13. Ohzawa I., Sclar G., Freeman R. D. Contrast gain control in the cat's visual system. J Neurophysiol. 1985 Sep;54(3):651–667. doi: 10.1152/jn.1985.54.3.651. [DOI] [PubMed] [Google Scholar]
  14. RUSHTON W. A. VISUAL ADAPTATION. Proc R Soc Lond B Biol Sci. 1965 Mar 16;162:20–46. doi: 10.1098/rspb.1965.0024. [DOI] [PubMed] [Google Scholar]
  15. Sakai H. M., Naka K. Response dynamics and receptive-field organization of catfish amacrine cells. J Neurophysiol. 1992 Feb;67(2):430–442. doi: 10.1152/jn.1992.67.2.430. [DOI] [PubMed] [Google Scholar]
  16. Sakai H. M., Naka K. Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J Neurophysiol. 1987 Dec;58(6):1307–1328. doi: 10.1152/jn.1987.58.6.1307. [DOI] [PubMed] [Google Scholar]
  17. Sakai H. M., Naka K. Signal transmission in the catfish retina. V. Sensitivity and circuit. J Neurophysiol. 1987 Dec;58(6):1329–1350. doi: 10.1152/jn.1987.58.6.1329. [DOI] [PubMed] [Google Scholar]
  18. Sakuranaga M., Ando Y., Naka K. Dynamics of the ganglion cell response in the catfish and frog retinas. J Gen Physiol. 1987 Aug;90(2):229–259. doi: 10.1085/jgp.90.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakuranaga M., Ando Y. Visual sensitivity and Wiener kernels. Vision Res. 1985;25(4):507–510. doi: 10.1016/0042-6989(85)90153-1. [DOI] [PubMed] [Google Scholar]
  20. Sakuranaga M., Naka K. Signal transmission in the catfish retina. II. Transmission to type-N cell. J Neurophysiol. 1985 Feb;53(2):390–410. doi: 10.1152/jn.1985.53.2.390. [DOI] [PubMed] [Google Scholar]
  21. Shapley R. M., Victor J. D. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J Physiol. 1981 Sep;318:161–179. doi: 10.1113/jphysiol.1981.sp013856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shapley R. M., Victor J. D. The effect of contrast on the non-linear response of the Y cell. J Physiol. 1980 May;302:535–547. doi: 10.1113/jphysiol.1980.sp013259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shapley R. M., Victor J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol. 1978 Dec;285:275–298. doi: 10.1113/jphysiol.1978.sp012571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shapley R., Victor J. D. The contrast gain control of the cat retina. Vision Res. 1979;19(4):431–434. doi: 10.1016/0042-6989(79)90109-3. [DOI] [PubMed] [Google Scholar]
  25. Victor J. D. The dynamics of the cat retinal X cell centre. J Physiol. 1987 May;386:219–246. doi: 10.1113/jphysiol.1987.sp016531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Victor J. D. The dynamics of the cat retinal Y cell subunit. J Physiol. 1988 Nov;405:289–320. doi: 10.1113/jphysiol.1988.sp017334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winslow R. L., Ma S. Bifurcation analysis of nonlinear retinal horizontal cell models. II. Network properties. J Neurophysiol. 1990 Jul;64(1):248–261. doi: 10.1152/jn.1990.64.1.248. [DOI] [PubMed] [Google Scholar]
  28. de Boer R., Kuyper P. Triggered correlation. IEEE Trans Biomed Eng. 1968 Jul;15(3):169–179. doi: 10.1109/tbme.1968.4502561. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES