Abstract
The activity of single L-type Ca2+ channels was recorded from cell- attached patches on acutely isolated skeletal muscle fibers from the mouse. The experiments were concerned with the mechanism by which aminoglycoside antibiotics inhibit ion flow through the channel. Aminoglycosides produced discrete fluctuations in the single-channel current when added to the external solution. The blocking kinetics could be described as a simple bimolecular reaction between an aminoglycoside molecule and the open channel. The blocking rate was found to be increased when either the membrane potential was made more negative or the concentration of external permeant ion was reduced. Both of these effects are consistent with a blocking site that is located within the channel pore. Other features of block, however, were incompatible with a simple pore blocking mechanism. Hyperpolarization enhanced the rate of unblocking, even though an aminoglycoside molecule must dissociate from its binding site in the channel toward the external solution against the membrane field. Raising the external permeant ion concentration also enhanced the rate of unblocking. This latter finding suggests that aminglycoside affinity is modified by repulsive interactions that arise when the pore is simultaneously occupied by a permeant ion and an aminoglycoside molecule.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 1969 Nov;54(5):553–575. doi: 10.1085/jgp.54.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M., Neyton J. Ion permeation through calcium channels. A one-site model. Ann N Y Acad Sci. 1991;635:18–25. doi: 10.1111/j.1749-6632.1991.tb36477.x. [DOI] [PubMed] [Google Scholar]
- Atchison W. D., Adgate L., Beaman C. M. Effects of antibiotics on uptake of calcium into isolated nerve terminals. J Pharmacol Exp Ther. 1988 May;245(2):394–401. [PubMed] [Google Scholar]
- Bekoff A., Betz W. J. Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol. 1977 Sep;271(1):25–40. doi: 10.1113/jphysiol.1977.sp011988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Correcting single channel data for missed events. Biophys J. 1986 May;49(5):967–980. doi: 10.1016/S0006-3495(86)83725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brasseur R., Laurent G., Ruysschaert J. M., Tulkens P. Interactions of aminoglycoside antibiotics with negatively charged lipid layers. Biochemical and conformational studies. Biochem Pharmacol. 1984 Feb 15;33(4):629–637. doi: 10.1016/0006-2952(84)90319-8. [DOI] [PubMed] [Google Scholar]
- Caputy A. J., Kim Y. I., Sanders D. B. The neuromuscular blocking effects of therapeutic concentrations of various antibiotics on normal rat skeletal muscle: a quantitative comparison. J Pharmacol Exp Ther. 1981 May;217(2):369–378. [PubMed] [Google Scholar]
- Chung L., Kaloyanides G., McDaniel R., McLaughlin A., McLaughlin S. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry. 1985 Jan 15;24(2):442–452. doi: 10.1021/bi00323a030. [DOI] [PubMed] [Google Scholar]
- Dorman D. E., Paschal J. W., Merkel K. E. 15N nuclear magnetic resonance spectroscopy. The nebramycin aminoglycosides. J Am Chem Soc. 1976 Oct 27;98(22):6885–6888. doi: 10.1021/ja00438a020. [DOI] [PubMed] [Google Scholar]
- Dretchen K. L., Gergis S. D., Sokoll M. D., Long J. P. Effect of various antibiotics on neuromuscular transmission. Eur J Pharmacol. 1972 May;18(2):201–203. doi: 10.1016/0014-2999(72)90243-9. [DOI] [PubMed] [Google Scholar]
- Dulon D., Zajic G., Aran J. M., Schacht J. Aminoglycoside antibiotics impair calcium entry but not viability and motility in isolated cochlear outer hair cells. J Neurosci Res. 1989 Oct;24(2):338–346. doi: 10.1002/jnr.490240226. [DOI] [PubMed] [Google Scholar]
- Gabev E., Kasianowicz J., Abbott T., McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta. 1989 Feb 13;979(1):105–112. doi: 10.1016/0005-2736(89)90529-4. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hess P., Lansman J. B., Tsien R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol. 1986 Sep;88(3):293–319. doi: 10.1085/jgp.88.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
- Hino N., Ochi R., Yanagisawa T. Inhibition of the slow inward current and the time-dependent outward current of mammalian ventricular muscle by gentamicin. Pflugers Arch. 1982 Sep;394(3):243–249. doi: 10.1007/BF00589099. [DOI] [PubMed] [Google Scholar]
- Josepovitz C., Pastoriza-Munoz E., Timmerman D., Scott M., Feldman S., Kaloyanides G. J. Inhibition of gentamicin uptake in rat renal cortex in vivo by aminoglycosides and organic polycations. J Pharmacol Exp Ther. 1982 Nov;223(2):314–321. [PubMed] [Google Scholar]
- Kim M. S., Morii T., Sun L. X., Imoto K., Mori Y. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 1993 Mar 1;318(2):145–148. doi: 10.1016/0014-5793(93)80009-j. [DOI] [PubMed] [Google Scholar]
- Kroese A. B., Das A., Hudspeth A. J. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics. Hear Res. 1989 Feb;37(3):203–217. doi: 10.1016/0378-5955(89)90023-3. [DOI] [PubMed] [Google Scholar]
- Kuo C. C., Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol. 1993 Jul;466:657–682. [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Hess P. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. J Physiol. 1993 Jul;466:629–655. [PMC free article] [PubMed] [Google Scholar]
- Lansman J. B. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol. 1990 Apr;95(4):679–696. doi: 10.1085/jgp.95.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lansman J. B., Hess P., Tsien R. W. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol. 1986 Sep;88(3):321–347. doi: 10.1085/jgp.88.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lüllmann H., Plösch H., Ziegler A. Ca replacement by cationic amphiphilic drugs from lipid monolayers. Biochem Pharmacol. 1980 Nov 1;29(21):2969–2974. doi: 10.1016/0006-2952(80)90046-5. [DOI] [PubMed] [Google Scholar]
- McCleskey E. W., Almers W. The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7149–7153. doi: 10.1073/pnas.82.20.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura K., Naruse K., Watanabe K., Sokabe M. Aminoglycoside blockade of Ca2(+)-activated K+ channel from rat brain synaptosomal membranes incorporated into planar bilayers. J Membr Biol. 1990 May;115(3):241–251. doi: 10.1007/BF01868639. [DOI] [PubMed] [Google Scholar]
- Ohmori H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol. 1985 Feb;359:189–217. doi: 10.1113/jphysiol.1985.sp015581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pietrobon D., Prod'hom B., Hess P. Interactions of protons with single open L-type calcium channels. pH dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions. J Gen Physiol. 1989 Jul;94(1):1–21. doi: 10.1085/jgp.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakon J., Liao H. H., Kanikula A. M., Benning M. M., Rayment I., Holden H. M. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry. 1993 Nov 16;32(45):11977–11984. doi: 10.1021/bi00096a006. [DOI] [PubMed] [Google Scholar]
- Singh Y. N., Marshall I. G., Harvey A. L. Depression of transmitter release and postjunctional sensitivity during neuromuscular block produced by antibiotics. Br J Anaesth. 1979 Nov;51(11):1027–1033. doi: 10.1093/bja/51.11.1027. [DOI] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Reuben J. P. Effects of neomycin on calcium channel currents in clonal GH3 pituitary cells. Pflugers Arch. 1987 Nov;410(4-5):517–523. doi: 10.1007/BF00586535. [DOI] [PubMed] [Google Scholar]
- TIMMERMAN J. C., LONG J. P., PITTINGER C. B. Neuromuscular blocking properties of various antibiotic agents. Toxicology. 1959 May;1(3):299–304. doi: 10.1016/0041-008x(59)90114-0. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Hess P., McCleskey E. W., Rosenberg R. L. Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem. 1987;16:265–290. doi: 10.1146/annurev.bb.16.060187.001405. [DOI] [PubMed] [Google Scholar]
- Wagner J. A., Snowman A. M., Olivera B. M., Snyder S. H. Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity. N Engl J Med. 1987 Dec 24;317(26):1669–1669. doi: 10.1056/NEJM198712243172618. [DOI] [PubMed] [Google Scholar]
- Winegar B. D., Kelly R., Lansman J. B. Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore. J Gen Physiol. 1991 Feb;97(2):351–367. doi: 10.1085/jgp.97.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. M., Collier B. The effects of neomycin upon transmitter release and action. J Pharmacol Exp Ther. 1977 Mar;200(3):576–587. [PubMed] [Google Scholar]
- Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]