Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Apr 1;107(4):515–534. doi: 10.1085/jgp.107.4.515

Kinetic isoforms of intramembrane charge in intact amphibian striated muscle

PMCID: PMC2217002  PMID: 8722564

Abstract

The effects of the ryanodine receptor (RyR) antagonists ryanodine and daunorubicin on the kinetic and steady-state properties of intramembrane charge were investigated in intact voltage-clamped frog skeletal muscle fibers under conditions that minimized time-dependent ionic currents. A hypothesis that RyR gating is allosterically coupled to configurational changes in dihydropyridine receptors (DHPRs) would predict that such interactions are reciprocal and that RyR modification should influence intramembrane charge. Both agents indeed modified the time course of charging transients at 100-200-microM concentrations. They independently abolished the delayed charging phases shown by q gamma currents, even in fibers held at fully polarized, -90-mV holding potentials; such waveforms are especially prominent in extracellular solutions containing gluconate. Charge movements consistently became exponential decays to stable baselines in the absence of intervening inward or other time-dependent currents. The steady-state charge transfers nevertheless remained equal through the ON and the OFF parts of test voltage steps. The charge-voltage function, Q(VT), shifted by approximately +10 mV, particularly through those test potentials at which delayed q gamma currents normally took place but retained steepness factors (k approximately 8.0 to 10.6 mV) that indicated persistent, steeply voltage-dependent q gamma contributions. Furthermore, both RyR antagonists preserved the total charge, and its variation with holding potential, Qmax (VH), which also retained similarly high voltage sensitivities (k approximately 7.0 to 9.0 mV). RyR antagonists also preserved the separate identities of q gamma and q beta species, whether defined by their steady-state voltage dependence or inactivation or pharmacological properties. Thus, tetracaine (2 mM) reduced the available steady-state charge movement and gave shallow Q(VT) (k approximately 14 to 16 mV) and Qmax (VH) (k approximately 14 to 17 mV) curves characteristic of q beta charge. These features persisted with exposure to test agent. Finally, q gamma charge movements showed steep voltage dependences with both activation (k approximately 4.0 to 6.5 mV) and inactivation characteristics (k approximately 4.3 to 6.6 mV) distinct from those shown by the remaining q beta charge, whether isolated through differential tetracaine sensitivities, or the full approximation of charge-voltage data to the sum of two Boltzmann distributions. RyR modification thus specifically alters q gamma kinetics while preserving the separate identities of steady-state q beta and q gamma charge. These findings permit a mechanism by which transverse tubular voltage provides the primary driving force for configurational changes in DHPRs, which might produce q gamma charge movement. However, they attribute its kinetic complexities to the reciprocal allosteric coupling by which DHPR voltage sensors and RyR-Ca2+ release channels might interact even though these receptors reside in electrically distinct membranes. RyR modification then would still permit tubular voltage change to drive net q gamma charge transfer but would transform its complex waveforms into simple exponential decays.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Peres A. Charge movement and membrane capacity in frog muscle. J Physiol. 1979 Apr;289:83–97. doi: 10.1113/jphysiol.1979.sp012726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson K., Meissner G. T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca(2+)-dependent mechanisms in cell homogenates from rabbit skeletal muscle. J Gen Physiol. 1995 Mar;105(3):363–383. doi: 10.1085/jgp.105.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor S. M., Hollingworth S., Marshall M. W. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres. J Physiol. 1989 Jan;408:617–635. doi: 10.1113/jphysiol.1989.sp017480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bean B. P., Rios E. Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J Gen Physiol. 1989 Jul;94(1):65–93. doi: 10.1085/jgp.94.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beuckelmann D. J., Wier W. G. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol. 1988 Nov;405:233–255. doi: 10.1113/jphysiol.1988.sp017331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bowling N., Mais D. E., Gerzon K., Watanabe A. M. Ryanodine and an iodinated analog: doxorubicin effects on binding and Ca2+ accumulation in cardiac sarcoplasmic reticulum. Eur J Pharmacol. 1994 Aug 16;268(3):365–373. doi: 10.1016/0922-4106(94)90061-2. [DOI] [PubMed] [Google Scholar]
  8. Cannell M. B., Cheng H., Lederer W. J. The control of calcium release in heart muscle. Science. 1995 May 19;268(5213):1045–1049. doi: 10.1126/science.7754384. [DOI] [PubMed] [Google Scholar]
  9. Chandler W. K., Hui C. S. Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):225–256. doi: 10.1085/jgp.96.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Csernoch L., Pizarro G., Uribe I., Rodríguez M., Ríos E. Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle. J Gen Physiol. 1991 May;97(5):845–884. doi: 10.1085/jgp.97.5.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dodd D. A., Atkinson J. B., Olson R. D., Buck S., Cusack B. J., Fleischer S., Boucek R. J., Jr Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest. 1993 Apr;91(4):1697–1705. doi: 10.1172/JCI116379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franzini-Armstrong C., Jorgensen A. O. Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol. 1994;56:509–534. doi: 10.1146/annurev.ph.56.030194.002453. [DOI] [PubMed] [Google Scholar]
  14. Fryer M. W., Lamb G. D., Neering I. R. The action of ryanodine on rat fast and slow intact skeletal muscles. J Physiol. 1989 Jul;414:399–413. doi: 10.1113/jphysiol.1989.sp017695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. García J., Avila-Sakar A. J., Stefani E. Differential effects of ryanodine and tetracaine on charge movement and calcium transients in frog skeletal muscle. J Physiol. 1991;440:403–417. doi: 10.1113/jphysiol.1991.sp018715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilly W. F., Scheuer T. Contractile activation in scorpion striated muscle fibers. Dependence on voltage and external calcium. J Gen Physiol. 1984 Sep;84(3):321–345. doi: 10.1085/jgp.84.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hagane K., Akera T., Berlin J. R. Doxorubicin: mechanism of cardiodepressant actions in guinea pigs. J Pharmacol Exp Ther. 1988 Aug;246(2):655–661. [PubMed] [Google Scholar]
  18. Hodgkin A. L., Nakajima S. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol. 1972 Feb;221(1):105–120. doi: 10.1113/jphysiol.1972.sp009742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hollingworth S., Marshall M. W., Robson E. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres. J Physiol. 1990 Feb;421:633–644. doi: 10.1113/jphysiol.1990.sp017966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holmberg S. R., Williams A. J. Patterns of interaction between anthraquinone drugs and the calcium-release channel from cardiac sarcoplasmic reticulum. Circ Res. 1990 Aug;67(2):272–283. doi: 10.1161/01.res.67.2.272. [DOI] [PubMed] [Google Scholar]
  21. Horowicz P., Schneider M. F. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J Physiol. 1981 May;314:595–633. doi: 10.1113/jphysiol.1981.sp013726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang C. L. Analysis of 'off' tails of intramembrane charge movements in skeletal muscle of Rana temporaria. J Physiol. 1984 Nov;356:375–390. doi: 10.1113/jphysiol.1984.sp015471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang C. L. Charge conservation in intact frog skeletal muscle fibres in gluconate-containing solutions. J Physiol. 1994 Jan 1;474(1):161–171. doi: 10.1113/jphysiol.1994.sp020010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang C. L. Dielectric components of charge movements in skeletal muscle. J Physiol. 1981;313:187–205. doi: 10.1113/jphysiol.1981.sp013658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huang C. L. Kinetic separation of charge movement components in intact frog skeletal muscle. J Physiol. 1994 Dec 1;481(Pt 2):357–369. doi: 10.1113/jphysiol.1994.sp020445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang C. L. Membrane capacitance in hyperpolarized muscle fibres. J Physiol. 1981;313:207–222. doi: 10.1113/jphysiol.1981.sp013659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Huang C. L., Peachey L. D. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers. J Gen Physiol. 1989 Mar;93(3):565–584. doi: 10.1085/jgp.93.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huang C. L. Pharmacological separation of charge movement components in frog skeletal muscle. J Physiol. 1982 Mar;324:375–387. doi: 10.1113/jphysiol.1982.sp014118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Huang C. L. Time domain spectroscopy of the membrane capacitance in frog skeletal muscle. J Physiol. 1983 Aug;341:1–24. doi: 10.1113/jphysiol.1983.sp014789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Huang C. L. Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. J Gen Physiol. 1990 Sep;96(3):535–557. doi: 10.1085/jgp.96.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hui C. S., Chandler W. K. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):257–297. doi: 10.1085/jgp.96.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hui C. S., Chandler W. K. Q beta and Q gamma components of intramembranous charge movement in frog cut twitch fibers. J Gen Physiol. 1991 Sep;98(3):429–464. doi: 10.1085/jgp.98.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hui C. S., Chen W. Separation of Q beta and Q gamma charge components in frog cut twitch fibers with tetracaine. Critical comparison with other methods. J Gen Physiol. 1992 Jun;99(6):985–1016. doi: 10.1085/jgp.99.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hui C. S. Differential properties of two charge components in frog skeletal muscle. J Physiol. 1983 Apr;337:531–552. doi: 10.1113/jphysiol.1983.sp014640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jong D. S., Pape P. C., Chandler W. K. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers. J Gen Physiol. 1995 Oct;106(4):659–704. doi: 10.1085/jgp.106.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kostyuk P. G., Krishtal O. A., Pidoplichko V. I. Calcium inward current and related charge movements in the membrane of snail neurones. J Physiol. 1981 Jan;310:403–421. doi: 10.1113/jphysiol.1981.sp013557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kovács L., Ríos E., Schneider M. F. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature. 1979 May 31;279(5712):391–396. doi: 10.1038/279391a0. [DOI] [PubMed] [Google Scholar]
  38. Lamb G. D. Components of charge movement in rabbit skeletal muscle: the effect of tetracaine and nifedipine. J Physiol. 1986 Jul;376:85–100. doi: 10.1113/jphysiol.1986.sp016143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995 May 19;268(5213):1042–1045. doi: 10.1126/science.7754383. [DOI] [PubMed] [Google Scholar]
  40. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  41. Melzer W., Schneider M. F., Simon B. J., Szucs G. Intramembrane charge movement and calcium release in frog skeletal muscle. J Physiol. 1986 Apr;373:481–511. doi: 10.1113/jphysiol.1986.sp016059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Olivares E. B., Tanksley S. J., Airey J. A., Beck C. F., Ouyang Y., Deerinck T. J., Ellisman M. H., Sutko J. L. Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys J. 1991 Jun;59(6):1153–1163. doi: 10.1016/S0006-3495(91)82331-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pape P. C., Jong D. S., Chandler W. K. A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers. J Gen Physiol. 1996 Jan;107(1):79–101. doi: 10.1085/jgp.107.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  45. Pessah I. N., Durie E. L., Schiedt M. J., Zimanyi I. Anthraquinone-sensitized Ca2+ release channel from rat cardiac sarcoplasmic reticulum: possible receptor-mediated mechanism of doxorubicin cardiomyopathy. Mol Pharmacol. 1990 Apr;37(4):503–514. [PubMed] [Google Scholar]
  46. Pizarro G., Csernoch L., Uribe I., Rodríguez M., Ríos E. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle. J Gen Physiol. 1991 May;97(5):913–947. doi: 10.1085/jgp.97.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rakowski R. F., Best P. M., James-Kracke M. R. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres. J Muscle Res Cell Motil. 1985 Aug;6(4):403–433. doi: 10.1007/BF00712580. [DOI] [PubMed] [Google Scholar]
  48. Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
  49. Rousseau E., Smith J. S., Meissner G. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol. 1987 Sep;253(3 Pt 1):C364–C368. doi: 10.1152/ajpcell.1987.253.3.C364. [DOI] [PubMed] [Google Scholar]
  50. Ríos E., Karhanek M., Ma J., González A. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1993 Sep;102(3):449–481. doi: 10.1085/jgp.102.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Scheuer T., Gilly W. F. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8799–8803. doi: 10.1073/pnas.83.22.8799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  53. Shirokova N., Pizarro G., Ríos E. A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers. J Gen Physiol. 1994 Sep;104(3):449–476. doi: 10.1085/jgp.104.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Simon B. J., Beam K. G. Slow charge movement in mammalian skeletal muscle. J Gen Physiol. 1985 Jan;85(1):1–19. doi: 10.1085/jgp.85.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Simon B. J., Hill D. A. Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles. Biophys J. 1992 May;61(5):1109–1116. doi: 10.1016/S0006-3495(92)81920-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sugiyama K., Muteki T. Local anesthetics depress the calcium current of rat sensory neurons in culture. Anesthesiology. 1994 Jun;80(6):1369–1378. doi: 10.1097/00000542-199406000-00025. [DOI] [PubMed] [Google Scholar]
  57. Sun X. H., Protasi F., Takahashi M., Takeshima H., Ferguson D. G., Franzini-Armstrong C. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol. 1995 May;129(3):659–671. doi: 10.1083/jcb.129.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Szücs G., Csernoch L., Magyar J., Kovács L. Contraction threshold and the "hump" component of charge movement in frog skeletal muscle. J Gen Physiol. 1991 May;97(5):897–911. doi: 10.1085/jgp.97.5.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Takekura H., Bennett L., Tanabe T., Beam K. G., Franzini-Armstrong C. Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA. Biophys J. 1994 Aug;67(2):793–803. doi: 10.1016/S0006-3495(94)80539-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Takekura H., Nishi M., Noda T., Takeshima H., Franzini-Armstrong C. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3381–3385. doi: 10.1073/pnas.92.8.3381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vergara J., Caputo C. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1477–1481. doi: 10.1073/pnas.80.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zimányi I., Buck E., Abramson J. J., Mack M. M., Pessah I. N. Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Mol Pharmacol. 1992 Dec;42(6):1049–1057. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES