Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Apr 1;107(4):503–514. doi: 10.1085/jgp.107.4.503

Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes

PMCID: PMC2217004  PMID: 8722563

Abstract

The mechanism of water permeation across the sarcolemma was characterized by examining the kinetics and temperature dependence of osmotic swelling and shrinkage of rabbit ventricular myocytes. The magnitude of swelling and the kinetics of swelling and shrinkage were temperature dependent, but the magnitude of shrinkage was very similar at 6 degrees, 22 degrees, and 37 degrees C. Membrane hydraulic conductivity, Lp, was approximately 1.2 x 10(-10) liter.N-1.s-1 at 22 degrees C, corresponding to an osmotic permeability coefficient, Pf, of 16 microns.s-1, and was independent of the direction of water flux, the magnitude of the imposed osmotic gradient (35-165 mosm/liter), and the initial cell volume. This value of Lp represents an upper limit because the membrane was assumed to be a smooth surface. Based on capacitive membrane area, Lp was 0.7 to 0.9 x 10(-10) liter.N-1.s-1. Nevertheless, estimates of Lp in ventricle are 15 to 25 times lower than those in human erythrocytes and are in the range of values reported for protein- free lipid bilayers and biological membranes without functioning water channels (aquaporin). Evaluation of the effect of unstirred layers showed that in the worst case they decrease Lp by < or = 2.3%. Analysis of the temperature dependence of Lp indicated that its apparent Arrhenius activation energy, Ea', was 11.7 +/- 0.9 kcal/mol between 6 degrees and 22 degrees C and 9.2 +/- 0.9 kcal/mol between 22 degrees and 37 degrees C. These values are significantly greater than that typically found for water flow through water-filled pores, approximately 4 kcal/mol, and are in the range reported for artificial and natural membranes without functioning water channels. Taken together, these data strongly argue that the vast majority of osmotic water flux in ventricular myocytes penetrates the lipid bilayer itself rather than passing through water-filled pores.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Preston G. M., Smith B. L., Jung J. S., Raina S., Moon C., Guggino W. B., Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993 Oct;265(4 Pt 2):F463–F476. doi: 10.1152/ajprenal.1993.265.4.F463. [DOI] [PubMed] [Google Scholar]
  2. Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
  3. Berman D. M., Peña-Rasgado C., Holmgren M., Hawkins P., Rasgado-Flores H. External Ca effect on water permeability, regulatory volume decrease, and extracellular space in barnacle muscle cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C1128–C1137. doi: 10.1152/ajpcell.1993.265.4.C1128. [DOI] [PubMed] [Google Scholar]
  4. Bondy C., Chin E., Smith B. L., Preston G. M., Agre P. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4500–4504. doi: 10.1073/pnas.90.10.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemo H. F., Baumgarten C. M. Atrial natriuretic factor decreases cell volume of rabbit atrial and ventricular myocytes. Am J Physiol. 1991 Apr;260(4 Pt 1):C681–C690. doi: 10.1152/ajpcell.1991.260.4.C681. [DOI] [PubMed] [Google Scholar]
  6. Clemo H. F., Feher J. J., Baumgarten C. M. Modulation of rabbit ventricular cell volume and Na+/K+/2Cl- cotransport by cGMP and atrial natriuretic factor. J Gen Physiol. 1992 Jul;100(1):89–114. doi: 10.1085/jgp.100.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deamer D. W., Bramhall J. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167–188. doi: 10.1016/0009-3084(86)90069-1. [DOI] [PubMed] [Google Scholar]
  8. Drewnowska K., Baumgarten C. M. Regulation of cellular volume in rabbit ventricular myocytes: bumetanide, chlorothiazide, and ouabain. Am J Physiol. 1991 Jan;260(1 Pt 1):C122–C131. doi: 10.1152/ajpcell.1991.260.1.C122. [DOI] [PubMed] [Google Scholar]
  9. Farmer R. E., Macey R. I. Perturbation of red cell volume: rectification of osmotic flow. Biochim Biophys Acta. 1970 Jan 6;196(1):53–65. doi: 10.1016/0005-2736(70)90165-3. [DOI] [PubMed] [Google Scholar]
  10. Fettiplace R., Haydon D. A. Water permeability of lipid membranes. Physiol Rev. 1980 Apr;60(2):510–550. doi: 10.1152/physrev.1980.60.2.510. [DOI] [PubMed] [Google Scholar]
  11. Fettiplace R. The influence of the lipid on the water permeability of artificial membranes. Biochim Biophys Acta. 1978 Oct 19;513(1):1–10. doi: 10.1016/0005-2736(78)90106-2. [DOI] [PubMed] [Google Scholar]
  12. Fischbarg J., Kuang K. Y., Vera J. C., Arant S., Silverstein S. C., Loike J., Rosen O. M. Glucose transporters serve as water channels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3244–3247. doi: 10.1073/pnas.87.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fischbarg J., Li J., Kuang K., Echevarría M., Iserovich P. Determination of volume and water permeability of plated cells from measurements of light scattering. Am J Physiol. 1993 Nov;265(5 Pt 1):C1412–C1423. doi: 10.1152/ajpcell.1993.265.5.C1412. [DOI] [PubMed] [Google Scholar]
  14. Folkesson H. G., Matthay M. A., Hasegawa H., Kheradmand F., Verkman A. S. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4970–4974. doi: 10.1073/pnas.91.11.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haines T. H. Water transport across biological membranes. FEBS Lett. 1994 Jun 6;346(1):115–122. doi: 10.1016/0014-5793(94)00470-6. [DOI] [PubMed] [Google Scholar]
  17. Hasegawa H., Lian S. C., Finkbeiner W. E., Verkman A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol. 1994 Apr;266(4 Pt 1):C893–C903. doi: 10.1152/ajpcell.1994.266.4.C893. [DOI] [PubMed] [Google Scholar]
  18. Hasegawa H., Skach W., Baker O., Calayag M. C., Lingappa V., Verkman A. S. A multifunctional aqueous channel formed by CFTR. Science. 1992 Nov 27;258(5087):1477–1479. doi: 10.1126/science.1279809. [DOI] [PubMed] [Google Scholar]
  19. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  20. Levin K. R., Page E. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res. 1980 Feb;46(2):244–255. doi: 10.1161/01.res.46.2.244. [DOI] [PubMed] [Google Scholar]
  21. Ma T., Frigeri A., Tsai S. T., Verbavatz J. M., Verkman A. S. Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells. J Biol Chem. 1993 Oct 25;268(30):22756–22764. [PubMed] [Google Scholar]
  22. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  23. McCarty N. A., O'Neil R. G. Calcium signaling in cell volume regulation. Physiol Rev. 1992 Oct;72(4):1037–1061. doi: 10.1152/physrev.1992.72.4.1037. [DOI] [PubMed] [Google Scholar]
  24. Moura T. F., Macey R. I., Chien D. Y., Karan D., Santos H. Thermodynamics of all-or-none water channel closure in red cells. J Membr Biol. 1984;81(2):105–111. doi: 10.1007/BF01868975. [DOI] [PubMed] [Google Scholar]
  25. Nassar R., Reedy M. C., Anderson P. A. Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res. 1987 Sep;61(3):465–483. doi: 10.1161/01.res.61.3.465. [DOI] [PubMed] [Google Scholar]
  26. Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992 Apr 17;256(5055):385–387. doi: 10.1126/science.256.5055.385. [DOI] [PubMed] [Google Scholar]
  27. Price H. D., Thompson T. E. Properties of liquid bilayer membranes separating two aqueous phases: temperature dependence of water permeability. J Mol Biol. 1969 May 14;41(3):443–457. doi: 10.1016/0022-2836(69)90287-3. [DOI] [PubMed] [Google Scholar]
  28. REUBEN J. P., GIRARDIER L., GRUNDFEST H. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS. J Gen Physiol. 1964 Jul;47:1141–1174. doi: 10.1085/jgp.47.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rich G. T., Sha'afi I., Romualdez A., Solomon A. K. Effect of osmolality on the hydraulic permeability coefficient of red cells. J Gen Physiol. 1968 Dec;52(6):941–954. doi: 10.1085/jgp.52.6.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rohlicek V., Schmid A. Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells. Pflugers Arch. 1994 Aug;428(1):30–38. doi: 10.1007/BF00374749. [DOI] [PubMed] [Google Scholar]
  31. Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. Prog Biophys Mol Biol. 1973;26:103–146. doi: 10.1016/0079-6107(73)90018-7. [DOI] [PubMed] [Google Scholar]
  32. Shibata A., Ikawa K., Shimooka T., Terada H. Significant stabilization of the phosphatidylcholine bilayer structure by incorporation of small amounts of cardiolipin. Biochim Biophys Acta. 1994 Jun 1;1192(1):71–78. doi: 10.1016/0005-2736(94)90144-9. [DOI] [PubMed] [Google Scholar]
  33. Solomon A. K. Water channels across the red blood cell and other biological membranes. Methods Enzymol. 1989;173:192–222. doi: 10.1016/s0076-6879(89)73013-5. [DOI] [PubMed] [Google Scholar]
  34. Sorenson A. L. Water permeability of isolated muscle fibers of a marine crab. J Gen Physiol. 1971 Sep;58(3):287–303. doi: 10.1085/jgp.58.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stewart J. M., Page E. Improved stereological techniques for studying myocardial cell growth: application to external sarcolemma, T system, and intercalated disks of rabbit and rat hearts. J Ultrastruct Res. 1978 Nov;65(2):119–134. doi: 10.1016/s0022-5320(78)90050-3. [DOI] [PubMed] [Google Scholar]
  36. Tsai S. T., Zhang R. B., Verkman A. S. High channel-mediated water permeability in rabbit erythrocytes: characterization in native cells and expression in Xenopus oocytes. Biochemistry. 1991 Feb 26;30(8):2087–2092. doi: 10.1021/bi00222a013. [DOI] [PubMed] [Google Scholar]
  37. Verkman A. S., Ives H. E. Water permeability and fluidity of renal basolateral membranes. Am J Physiol. 1986 Apr;250(4 Pt 2):F633–F643. doi: 10.1152/ajprenal.1986.250.4.F633. [DOI] [PubMed] [Google Scholar]
  38. Vieira F. L., Sha'afi R. I., Solomon A. K. The state of water in human and dog red cell membranes. J Gen Physiol. 1970 Apr;55(4):451–466. doi: 10.1085/jgp.55.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Worman H. J., Field M. Osmotic water permeability of small intestinal brush-border membranes. J Membr Biol. 1985;87(3):233–239. doi: 10.1007/BF01871223. [DOI] [PubMed] [Google Scholar]
  40. ZADUNAISKY J. A., PARISI M. N., MONTOREANO R. EFFECT OF ANTIDIURETIC HORMONE ON PERMEABILITY OF SINGLE MUSCLE FIBRES. Nature. 1963 Oct 26;200:365–366. doi: 10.1038/200365a0. [DOI] [PubMed] [Google Scholar]
  41. Zeidel M. L., Ambudkar S. V., Smith B. L., Agre P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry. 1992 Aug 25;31(33):7436–7440. doi: 10.1021/bi00148a002. [DOI] [PubMed] [Google Scholar]
  42. van Hoek A. N., Verkman A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem. 1992 Sep 15;267(26):18267–18269. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES