Abstract
The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akabas M., Dodd J., al-Awqati Q. Identification of electrophysiologically distinct subpopulations of rat taste cells. J Membr Biol. 1990 Mar;114(1):71–78. doi: 10.1007/BF01869386. [DOI] [PubMed] [Google Scholar]
- Avenet P., Lindemann B. Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol. 1988 Nov;105(3):245–255. doi: 10.1007/BF01871001. [DOI] [PubMed] [Google Scholar]
- Avenet P., Lindemann B. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride. J Membr Biol. 1991 Oct;124(1):33–41. doi: 10.1007/BF01871362. [DOI] [PubMed] [Google Scholar]
- Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
- Cummings T. A., Powell J., Kinnamon S. C. Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. J Neurophysiol. 1993 Dec;70(6):2326–2336. doi: 10.1152/jn.1993.70.6.2326. [DOI] [PubMed] [Google Scholar]
- Desimone J. A., Heck G. L., Mierson S., Desimone S. K. The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction. J Gen Physiol. 1984 May;83(5):633–656. doi: 10.1085/jgp.83.5.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Formaker B. K., Hill D. L. Lack of amiloride sensitivity in SHR and WKY glossopharyngeal taste responses to NaCl. Physiol Behav. 1991 Oct;50(4):765–769. doi: 10.1016/0031-9384(91)90015-g. [DOI] [PubMed] [Google Scholar]
- Frank M. E., Bieber S. L., Smith D. V. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J Gen Physiol. 1988 Jun;91(6):861–896. doi: 10.1085/jgp.91.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garty H., Benos D. J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev. 1988 Apr;68(2):309–373. doi: 10.1152/physrev.1988.68.2.309. [DOI] [PubMed] [Google Scholar]
- Garty H., Edelman I. S. Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol. 1983 Jun;81(6):785–803. doi: 10.1085/jgp.81.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbertson D. M., Gilbertson T. A. Amiloride reduces the aversiveness of acids in preference tests. Physiol Behav. 1994 Oct;56(4):649–654. doi: 10.1016/0031-9384(94)90221-6. [DOI] [PubMed] [Google Scholar]
- Gilbertson T. A., Avenet P., Kinnamon S. C., Roper S. D. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J Gen Physiol. 1992 Nov;100(5):803–824. doi: 10.1085/jgp.100.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbertson T. A., Roper S. D., Kinnamon S. C. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron. 1993 May;10(5):931–942. doi: 10.1016/0896-6273(93)90208-9. [DOI] [PubMed] [Google Scholar]
- Gilbertson T. A. The physiology of vertebrate taste reception. Curr Opin Neurobiol. 1993 Aug;3(4):532–539. doi: 10.1016/0959-4388(93)90052-z. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hanamori T., Miller I. J., Jr, Smith D. V. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J Neurophysiol. 1988 Aug;60(2):478–498. doi: 10.1152/jn.1988.60.2.478. [DOI] [PubMed] [Google Scholar]
- Heck G. L., Mierson S., DeSimone J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984 Jan 27;223(4634):403–405. doi: 10.1126/science.6691151. [DOI] [PubMed] [Google Scholar]
- Hettinger T. P., Frank M. E. Specificity of amiloride inhibition of hamster taste responses. Brain Res. 1990 Apr 9;513(1):24–34. doi: 10.1016/0006-8993(90)91085-u. [DOI] [PubMed] [Google Scholar]
- Hill D. L., Bour T. C. Addition of functional amiloride-sensitive components to the receptor membrane: a possible mechanism for altered taste responses during development. Brain Res. 1985 Jun;352(2):310–313. doi: 10.1016/0165-3806(85)90121-x. [DOI] [PubMed] [Google Scholar]
- Hill D. L., Formaker B. K., White K. S. Perceptual characteristics of the amiloride-suppressed sodium chloride taste response in the rat. Behav Neurosci. 1990 Oct;104(5):734–741. doi: 10.1037//0735-7044.104.5.734. [DOI] [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kashiwayanagi M., Miyake M., Kurihara K. Voltage-dependent Ca2+ channel and Na+ channel in frog taste cells. Am J Physiol. 1983 Jan;244(1):C82–C88. doi: 10.1152/ajpcell.1983.244.1.C82. [DOI] [PubMed] [Google Scholar]
- Kinnamon S. C., Roper S. D. Membrane properties of isolated mudpuppy taste cells. J Gen Physiol. 1988 Mar;91(3):351–371. doi: 10.1085/jgp.91.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. J., Blackshaw S., Snyder S. H. Expression and localization of amiloride-sensitive sodium channel indicate a role for non-taste cells in taste perception. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1814–1818. doi: 10.1073/pnas.91.5.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. J., Xu R. H., Guggino W. B., Snyder S. H. Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pore. Mol Pharmacol. 1995 Jun;47(6):1133–1140. [PubMed] [Google Scholar]
- Lingueglia E., Renard S., Waldmann R., Voilley N., Champigny G., Plass H., Lazdunski M., Barbry P. Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem. 1994 May 13;269(19):13736–13739. [PubMed] [Google Scholar]
- Roper S. Regenerative impulses in taste cells. Science. 1983 Jun 17;220(4603):1311–1312. doi: 10.1126/science.6857254. [DOI] [PubMed] [Google Scholar]
- Simon S. A., Holland V. F., Benos D. J., Zampighi G. A. Transcellular and paracellular pathways in lingual epithelia and their influence in taste transduction. Microsc Res Tech. 1993 Oct 15;26(3):196–208. doi: 10.1002/jemt.1070260303. [DOI] [PubMed] [Google Scholar]
- Sollars S. I., Bernstein I. L. Amiloride sensitivity in the neonatal rat. Behav Neurosci. 1994 Oct;108(5):981–987. doi: 10.1037//0735-7044.108.5.981. [DOI] [PubMed] [Google Scholar]
- Stewart R. E., Tong H., McCarty R., Hill D. L. Altered gustatory development in Na(+)-restricted rats is not explained by low Na+ levels in mothers' milk. Physiol Behav. 1993 Apr;53(4):823–826. doi: 10.1016/0031-9384(93)90194-k. [DOI] [PubMed] [Google Scholar]
- Tonosaki K., Funakoshi M. Amiloride does not block taste transduction in the mouse (Slc:ICR). Comp Biochem Physiol A Comp Physiol. 1989;94(4):659–661. [PubMed] [Google Scholar]
- Ye Q., Heck G. L., DeSimone J. A. The anion paradox in sodium taste reception: resolution by voltage-clamp studies. Science. 1991 Nov 1;254(5032):724–726. doi: 10.1126/science.1948054. [DOI] [PubMed] [Google Scholar]