Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Apr 1;107(4):535–544. doi: 10.1085/jgp.107.4.535

Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways

PMCID: PMC2217008  PMID: 8722565

Abstract

Organization of afferent information into parallel ON and OFF pathways is a critical feature of the vertebrate visual system. All afferent visual information in the vertebrate retina reaches the inner plexiform layer (IPL) via bipolar cells. It is at the bipolar cell level that separation of ON and OFF information first appears for afferent information from cones. This may also hold true for the rod pathway of cold-blooded vertebrates, but not for mammals. The all-rod retina of the skate presents an opportunity to examine such pathways in a retina having but a single class of photoreceptor. Immunocytochemical evidence suggests that both ON and OFF bipolar cells are present in the skate retina. We examined the pharmacology of the skate electroretinogram (ERG) to test the hypothesis that independent ON and OFF bipolar cell pathways are functional as rod afferent pathways from outer to inner plexiform layer in the skate. 100 microM 2-amino-4-phosphonobutyric acid (APB) reversibly blocked the skate ERG b-wave. A small d-wave-like OFF component of the ERG revealed by DC recording of response to a prolonged (10 s) flash of light was reduced or blocked by 5 mM kynurenic acid (KYN). We found that addition of 200 microM picrotoxin to the Ringer's solution revealed prominent ON and OFF components of the skate ERG while reducing the c-wave. These ON and OFF components were reversibly blocked by 100 microM APB and 5 mM KYN, respectively. Reversible block of the OFF component by KYN was also accomplished in the presence of 500 microM N-methyl-DL-aspartate. From these findings, we conclude that ON and OFF bipolar cells are likely to be functional as parallel afferent interplexiform pathways in the all-rod retina of the skate.

Full Text

The Full Text of this article is available as a PDF (987.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruun A., Ehinger B., Sytsma V. M. Neurotransmitter localization in the skate retina. Brain Res. 1984 Mar 19;295(2):233–248. doi: 10.1016/0006-8993(84)90972-7. [DOI] [PubMed] [Google Scholar]
  2. Coleman P. A., Massey S. C., Miller R. F. Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina. Brain Res. 1986 Aug 27;381(1):172–175. doi: 10.1016/0006-8993(86)90708-0. [DOI] [PubMed] [Google Scholar]
  3. Cornwall M. C., Ripps H., Chappell R. L., Jones G. J. Membrane current responses of skate photoreceptors. J Gen Physiol. 1989 Oct;94(4):633–647. doi: 10.1085/jgp.94.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dacheux R. F., Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986 Feb;6(2):331–345. doi: 10.1523/JNEUROSCI.06-02-00331.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daw N. W., Jensen R. J., Brunken W. J. Rod pathways in mammalian retinae. Trends Neurosci. 1990 Mar;13(3):110–115. doi: 10.1016/0166-2236(90)90187-f. [DOI] [PubMed] [Google Scholar]
  6. Dick E., Miller R. F. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 1978 Oct 13;154(2):388–394. doi: 10.1016/0006-8993(78)90711-4. [DOI] [PubMed] [Google Scholar]
  7. Dolan R. P., Schiller P. H. Evidence for only depolarizing rod bipolar cells in the primate retina. Vis Neurosci. 1989;2(5):421–424. doi: 10.1017/s0952523800012311. [DOI] [PubMed] [Google Scholar]
  8. Dowling J. E., Ripps H. The proximal negative response and visual adaptation in the skate retina. J Gen Physiol. 1977 Jan;69(1):57–74. doi: 10.1085/jgp.69.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dowling J. E., Ripps H. Visual adaptation in the retina of the skate. J Gen Physiol. 1970 Oct;56(4):491–520. doi: 10.1085/jgp.56.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Famiglietti E. V., Jr, Kaneko A., Tachibana M. Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science. 1977 Dec 23;198(4323):1267–1269. doi: 10.1126/science.73223. [DOI] [PubMed] [Google Scholar]
  11. Famiglietti E. V., Jr, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975 Feb 7;84(2):293–300. doi: 10.1016/0006-8993(75)90983-x. [DOI] [PubMed] [Google Scholar]
  12. Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933 Feb 8;77(3):207–239. doi: 10.1113/jphysiol.1933.sp002964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Green D. G., Siegel I. M. Double branched flicker fusion curves from the all-rod skate retina. Science. 1975 Jun 13;188(4193):1120–1122. doi: 10.1126/science.1215989. [DOI] [PubMed] [Google Scholar]
  14. Kaneko A., Tachibana M. Convergence of rod and cone signals to single bipolar cells in the carp retina. Sens Processes. 1978 Dec;2(4):383–387. [PubMed] [Google Scholar]
  15. Karowski C. J., Proenza L. M. Relationship between Müller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977 Mar;40(2):244–259. doi: 10.1152/jn.1977.40.2.244. [DOI] [PubMed] [Google Scholar]
  16. Karschin A., Wässle H. Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. J Neurophysiol. 1990 Apr;63(4):860–876. doi: 10.1152/jn.1990.63.4.860. [DOI] [PubMed] [Google Scholar]
  17. Katz B. J., Wen R., Zheng J. B., Xu Z. A., Oakley B., 2nd M-wave of the toad electroretinogram. J Neurophysiol. 1991 Dec;66(6):1927–1940. doi: 10.1152/jn.1991.66.6.1927. [DOI] [PubMed] [Google Scholar]
  18. Kline R. P., Ripps H., Dowling J. E. Generation of b-wave currents in the skate retina. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5727–5731. doi: 10.1073/pnas.75.11.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kline R. P., Ripps H., Dowling J. E. Light-induced potassium fluxes in the skate retina. Neuroscience. 1985 Jan;14(1):225–235. doi: 10.1016/0306-4522(85)90175-7. [DOI] [PubMed] [Google Scholar]
  20. Knapp A. G., Schiller P. H. The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys. A study using 2-amino-4-phosphonobutyrate (APB). Vision Res. 1984;24(12):1841–1846. doi: 10.1016/0042-6989(84)90016-6. [DOI] [PubMed] [Google Scholar]
  21. Kolb H., Famiglietti E. V. Rod and cone pathways in the inner plexiform layer of cat retina. Science. 1974 Oct 4;186(4158):47–49. doi: 10.1126/science.186.4158.47. [DOI] [PubMed] [Google Scholar]
  22. Malchow R. P., Qian H. H., Ripps H. gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4326–4330. doi: 10.1073/pnas.86.11.4326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Massey S. C., Redburn D. A., Crawford M. L. The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Res. 1983;23(12):1607–1613. doi: 10.1016/0042-6989(83)90174-8. [DOI] [PubMed] [Google Scholar]
  24. Massey S. C., Redburn D. A. Transmitter circuits in the vertebrate retina. Prog Neurobiol. 1987;28(1):55–96. doi: 10.1016/0301-0082(87)90005-0. [DOI] [PubMed] [Google Scholar]
  25. McGuire B. A., Stevens J. K., Sterling P. Microcircuitry of bipolar cells in cat retina. J Neurosci. 1984 Dec;4(12):2920–2938. doi: 10.1523/JNEUROSCI.04-12-02920.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
  27. Müller F., Wässle H., Voigt T. Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol. 1988 Jun;59(6):1657–1672. doi: 10.1152/jn.1988.59.6.1657. [DOI] [PubMed] [Google Scholar]
  28. NOELL W. K. The origin of the electroretinogram. Am J Ophthalmol. 1954 Jul;38(12):78–90. doi: 10.1016/0002-9394(54)90012-4. [DOI] [PubMed] [Google Scholar]
  29. Negishi K., Kato S., Teranishi T. Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett. 1988 Dec 5;94(3):247–252. doi: 10.1016/0304-3940(88)90025-0. [DOI] [PubMed] [Google Scholar]
  30. Oakley B., 2nd, Steinberg R. H., Miller S. S., Nilsson S. E. The in vitro frog pigment epithelial cell hyperpolarization in response to light. Invest Ophthalmol Vis Sci. 1977 Aug;16(8):771–774. [PubMed] [Google Scholar]
  31. Qian H., Malchow R. P., Chappell R. L., Ripps H. The GABAA receptors of Müller (glial) cells in skate retina. Biol Bull. 1994 Oct;187(2):263–265. doi: 10.1086/BBLv187n2p263. [DOI] [PubMed] [Google Scholar]
  32. Scholes J. H. Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philos Trans R Soc Lond B Biol Sci. 1975 Feb 20;270(902):61–118. doi: 10.1098/rstb.1975.0004. [DOI] [PubMed] [Google Scholar]
  33. Shiells R. A., Falk G., Naghshineh S. Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature. 1981 Dec 10;294(5841):592–594. doi: 10.1038/294592a0. [DOI] [PubMed] [Google Scholar]
  34. Sieving P. A., Murayama K., Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994 May-Jun;11(3):519–532. doi: 10.1017/s0952523800002431. [DOI] [PubMed] [Google Scholar]
  35. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  36. Slaughter M. M., Miller R. F. An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science. 1983 Mar 11;219(4589):1230–1232. doi: 10.1126/science.6131536. [DOI] [PubMed] [Google Scholar]
  37. Slaughter M. M., Miller R. F. Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter. Nature. 1983 Jun 9;303(5917):537–538. doi: 10.1038/303537a0. [DOI] [PubMed] [Google Scholar]
  38. Slaughter M. M., Miller R. F. The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl aspartate. J Neurosci. 1983 Aug;3(8):1701–1711. doi: 10.1523/JNEUROSCI.03-08-01701.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith E. L., 3rd, Harwerth R. S., Crawford M. L., Duncan G. C. Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity. Vis Neurosci. 1989 Sep;3(3):225–239. doi: 10.1017/s0952523800009986. [DOI] [PubMed] [Google Scholar]
  40. Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
  41. Stell W. K., Ishida A. T., Lightfoot D. O. Structural basis for on-and off-center responses in retinal bipolar cells. Science. 1977 Dec 23;198(4323):1269–1271. doi: 10.1126/science.201028. [DOI] [PubMed] [Google Scholar]
  42. Stell W. K. The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Am J Anat. 1967 Sep;121(2):401–423. doi: 10.1002/aja.1001210213. [DOI] [PubMed] [Google Scholar]
  43. Stockton R. A., Slaughter M. M. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989 Jan;93(1):101–122. doi: 10.1085/jgp.93.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Szamier R. B., Ripps H., Chappell R. L. Changes in ERG b-wave and Müller cell structure induced by alpha-aminoadipic acid. Neurosci Lett. 1981 Feb 6;21(3):307–312. doi: 10.1016/0304-3940(81)90222-6. [DOI] [PubMed] [Google Scholar]
  45. Szamier R. B., Ripps H. The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties. J Comp Neurol. 1983 Mar 20;215(1):51–62. doi: 10.1002/cne.902150105. [DOI] [PubMed] [Google Scholar]
  46. Tian N., Slaughter M. M. Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res. 1995 May;35(10):1359–1364. doi: 10.1016/0042-6989(95)98715-l. [DOI] [PubMed] [Google Scholar]
  47. Toyoda J. I., Tonosaki K. Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina. Nature. 1978 Nov 23;276(5686):399–400. doi: 10.1038/276399a0. [DOI] [PubMed] [Google Scholar]
  48. Vaney D. I., Young H. M., Gynther I. C. The rod circuit in the rabbit retina. Vis Neurosci. 1991 Jul-Aug;7(1-2):141–154. doi: 10.1017/s0952523800011019. [DOI] [PubMed] [Google Scholar]
  49. Weiler R., Schütte M. Morphological and pharmacological analysis of putative serotonergic bipolar and amacrine cells in the retina of a turtle, Pseudemys scripta elegans. Cell Tissue Res. 1985;241(2):373–382. doi: 10.1007/BF00217183. [DOI] [PubMed] [Google Scholar]
  50. Wood J. G., Hart C. E., Mazzei G. J., Girard P. R., Kuo J. F. Distribution of protein kinase C immunoreactivity in rat retina. Histochem J. 1988 Feb;20(2):63–68. doi: 10.1007/BF01746605. [DOI] [PubMed] [Google Scholar]
  51. Wu S. M., Dowling J. E. L-aspartate: evidence for a role in cone photoreceptor synaptic transmission in the carp retina. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5205–5209. doi: 10.1073/pnas.75.10.5205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Xu X., Karwoski C. J. Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and M-wave. J Neurophysiol. 1994 Jul;72(1):96–105. doi: 10.1152/jn.1994.72.1.96. [DOI] [PubMed] [Google Scholar]
  53. Yamashita M., Wässle H. Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). J Neurosci. 1991 Aug;11(8):2372–2382. doi: 10.1523/JNEUROSCI.11-08-02372.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yang X. L., Wu S. M. Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3310–3313. doi: 10.1073/pnas.88.8.3310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zeumer C., Hanitzsch R., Mättig W. U. The c-wave of the electroretinogram possesses a third component from the proximal retina. Vision Res. 1994 Oct;34(20):2673–2678. doi: 10.1016/0042-6989(94)90223-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES