Abstract
The leading edge of the response of Limulus ventral photoreceptors to brief flashes was investigated using a voltage clamp. The leading edge of responses increases linearly with flash intensity when dim flashes produce less than one photoisomerization per square micron of cell surface. Brighter flashes accelerate the initial portion of the response, resulting in a fourth-power relationship between the magnitude of the response at brief times after the flash and the flash intensity. The onset of this nonlinearity with increasing flash intensity is determined by the local density of photoisomerizations within the receptor. Responses to bright 10-15-mum-diam spots therefore rise faster than responses to diffuse flashes producing the same number of photoisomerizations within the receptor. Background illumination shortens the response latency and suppresses the initial nonlinearity. These phenomena can be explained by a model of transduction in which light activates two parallel cascades of reactions. Particles released by the first of these cascades open ionic channels, while the second produces an agent that accelerates the rate of production of particles by the first. Injection of the calcium buffer EGTA slows the initial portion of the response to bright flashes and suppresses its nonlinearity, which suggests that the accelerating agent released by the second cascade is calcium.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baylor D. A., Hodgkin A. L., Lamb T. D. The electrical response of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):685–727. doi: 10.1113/jphysiol.1974.sp010731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
- Bolsover S. R., Brown J. E. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors. J Physiol. 1985 Jul;364:381–393. doi: 10.1113/jphysiol.1985.sp015751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borsellino A., Fuortes M. G., Smith T. G. Visual responses in Limulus. Cold Spring Harb Symp Quant Biol. 1965;30:429–443. doi: 10.1101/sqb.1965.030.01.042. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Brown P. K., Pinto L. H. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III. J Physiol. 1977 May;267(2):299–320. doi: 10.1113/jphysiol.1977.sp011814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Coles J. A. Saturation of the response to light in Limulus ventral photoreceptor. J Physiol. 1979 Nov;296:373–392. doi: 10.1113/jphysiol.1979.sp013011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Lisman J. E. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature. 1975 Nov 20;258(5532):252–254. doi: 10.1038/258252a0. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Rubin L. J. A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1137–1142. doi: 10.1016/0006-291x(84)91402-5. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Rubin L. J., Ghalayini A. J., Tarver A. P., Irvine R. F., Berridge M. J., Anderson R. E. myo-Inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 1984 Sep 13;311(5982):160–163. doi: 10.1038/311160a0. [DOI] [PubMed] [Google Scholar]
- Calman B. G., Chamberlain S. C. Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure. J Gen Physiol. 1982 Dec;80(6):839–862. doi: 10.1085/jgp.80.6.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corson D. W., Fein A. Quantitative pressure injection of picoliter volumes into Limulus ventral photoreceptors. Biophys J. 1983 Dec;44(3):299–304. doi: 10.1016/S0006-3495(83)84303-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. A quantitative comparison of the time-course of sensitivity changes produced by calcium injection and light adaptation in Limulus ventral photoreceptors. Biophys J. 1978 Apr;22(1):105–113. doi: 10.1016/S0006-3495(78)85474-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. Enhancement and phototransduction in the ventral eye of limulus. J Gen Physiol. 1977 May;69(5):553–569. doi: 10.1085/jgp.69.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. Increased intracellular sodium mimics some but not all aspects of photoreceptor adaptation in the ventral eye of Limulus. J Gen Physiol. 1977 Nov;70(5):601–620. doi: 10.1085/jgp.70.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. Local adaptation in the ventral photoreceptors of Limulus. J Gen Physiol. 1975 Dec;66(6):823–836. doi: 10.1085/jgp.66.6.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. Local membrane current in Limulus photoreceptors. Nature. 1975 Nov 20;258(5532):250–252. doi: 10.1038/258250a0. [DOI] [PubMed] [Google Scholar]
- Fein A., DeVoe R. D. Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J Gen Physiol. 1973 Mar;61(3):273–289. doi: 10.1085/jgp.61.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Payne R., Corson D. W., Berridge M. J., Irvine R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature. 1984 Sep 13;311(5982):157–160. doi: 10.1038/311157a0. [DOI] [PubMed] [Google Scholar]
- French A. S. The linear dynamic properties of phototransduction in the fly compound eye. J Physiol. 1980 Nov;308:385–401. doi: 10.1113/jphysiol.1980.sp013477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman A. L., Thomas M. V. Intracellular calcium accumulation during depolarization in a molluscan neurone. J Physiol. 1980 Nov;308:259–285. doi: 10.1113/jphysiol.1980.sp013471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
- Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinson J. One-stage model for visual temporal integration. J Opt Soc Am. 1966 Jan;56(1):95–97. doi: 10.1364/josa.56.000095. [DOI] [PubMed] [Google Scholar]
- Levy S., Fein A. Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes. J Gen Physiol. 1985 Jun;85(6):805–841. doi: 10.1085/jgp.85.6.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E., Brown J. E. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):489–506. doi: 10.1085/jgp.66.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E., Brown J. E. Light-induced changes of sensitivity in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):473–488. doi: 10.1085/jgp.66.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez J. M., 2nd, Srebro R. Calcium and the control of discrete wave latency in the ventral photoreceptor of Limulus. J Physiol. 1976 Oct;261(3):535–562. doi: 10.1113/jphysiol.1976.sp011573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiegler J. B., Yeandle S. Independence of location of light absorption and discrete wave latency distribution in Limulus ventral nerve photoreceptors. J Gen Physiol. 1974 Oct;64(4):494–502. doi: 10.1085/jgp.64.4.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern J., Chinn K., Bacigalupo J., Lisman J. Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells. J Gen Physiol. 1982 Dec;80(6):825–837. doi: 10.1085/jgp.80.6.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wald G. Visual excitation and blood clotting. Science. 1965 Nov 19;150(3699):1028–1030. doi: 10.1126/science.150.3699.1028. [DOI] [PubMed] [Google Scholar]
- Wong F., Knight B. W., Dodge F. A. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol. 1982 Jun;79(6):1089–1113. doi: 10.1085/jgp.79.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
