Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1986 Mar 1;87(3):503–509. doi: 10.1085/jgp.87.3.503

Na+ and K+ transport at basolateral membranes of epithelial cells. III. Voltage independence of basolateral membrane Na+ efflux

PMCID: PMC2217612  PMID: 2420921

Abstract

Na+ efflux across basolateral membranes of isolated epithelia of frog skin was tested for voltage sensitivity. The intracellular Na+ transport pool was loaded with 24Na from the apical solution and the rate of isotope appearance in the basolateral solution (JNa23) was measured at timed intervals of 30 s. Basolateral membrane voltage was depolarized by either 50 mM K+, 5 mM Ba++, or 80 mM NH+4. Whereas within 30 s ouabain caused inhibition of JNa23, depolarization of Vb by 30-60 mV caused no significant change of JNa23. Thus, both pump- mediated and leak Na+ effluxes were voltage independent. Although the pumps are electrogenic, pump-mediated Na+ efflux is voltage independent, perhaps because of a nonlinear relationship between pump current and transmembrane voltage. Voltage independence of the leak Na+ efflux confirms a previous suggestion (Cox and Helman, 1983. American Journal of Physiology. 245:F312-F321) that basolateral membrane Na+ leak fluxes are electroneutral.

Full Text

The Full Text of this article is available as a PDF (369.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinley F. J., Jr, Mullins L. J. Effects of membrane potential on sodium and potassium fluxes in squid axons. Ann N Y Acad Sci. 1974;242(0):406–433. doi: 10.1111/j.1749-6632.1974.tb19106.x. [DOI] [PubMed] [Google Scholar]
  2. Cox T. C., Helman S. I. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin. Am J Physiol. 1983 Sep;245(3):F312–F321. doi: 10.1152/ajprenal.1983.245.3.F312. [DOI] [PubMed] [Google Scholar]
  3. Cox T. C., Helman S. I. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin. Am J Physiol. 1983 Sep;245(3):F312–F321. doi: 10.1152/ajprenal.1983.245.3.F312. [DOI] [PubMed] [Google Scholar]
  4. Cox T. C., Helman S. I. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase. J Gen Physiol. 1986 Mar;87(3):485–502. doi: 10.1085/jgp.87.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Weer P. Electrogenic pumps: theoretical and practical considerations. Soc Gen Physiol Ser. 1984;38:1–15. [PubMed] [Google Scholar]
  6. Eaton D. C., Hamilton K. L., Johnson K. E. Intracellular acidosis blocks the basolateral Na-K pump in rabbit urinary bladder. Am J Physiol. 1984 Dec;247(6 Pt 2):F946–F954. doi: 10.1152/ajprenal.1984.247.6.F946. [DOI] [PubMed] [Google Scholar]
  7. Fisher R. S., Erlij D., Helman S. I. Intracellular voltage of isolated epithelia of frog skin: apical and basolateral cell punctures. J Gen Physiol. 1980 Oct;76(4):447–453. doi: 10.1085/jgp.76.4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helman S. I., Nagel W., Fisher R. S. Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes. J Gen Physiol. 1979 Jul;74(1):105–127. doi: 10.1085/jgp.74.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nagel W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta. 1979 Apr 4;552(2):346–357. doi: 10.1016/0005-2736(79)90289-x. [DOI] [PubMed] [Google Scholar]
  11. Nunnally R. L., Stoddard J. S., Helman S. I., Kokko J. P. Response of 31P-nuclear magnetic resonance spectra of frog skin to variations in PCO2 and hypoxia. Am J Physiol. 1983 Dec;245(6):F792–F800. doi: 10.1152/ajprenal.1983.245.6.F792. [DOI] [PubMed] [Google Scholar]
  12. O'Neil R., Helman S. I. Influence of vasopressin and amiloride on shunt pathways of frog skin. Am J Physiol. 1976 Jul;231(1):164–173. doi: 10.1152/ajplegacy.1976.231.1.164. [DOI] [PubMed] [Google Scholar]
  13. Stoddard J. S., Helman S. I. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin. Am J Physiol. 1985 Nov;249(5 Pt 2):F662–F671. doi: 10.1152/ajprenal.1985.249.5.F662. [DOI] [PubMed] [Google Scholar]
  14. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES