Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1986 Mar 1;87(3):369–389. doi: 10.1085/jgp.87.3.369

Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells

H Yamamoto, C van Breemen
PMCID: PMC2217615  PMID: 3514788

Abstract

A method for saponin skinning of primary cultured rat aortic smooth muscle cells was established. The saponin-treated cells could be stained with trypan blue and incorporated more 45Ca2+ than the nontreated cells under the same conditions. At low free Ca2+ concentration, greater than 85% of 45Ca2+ uptake into the skinned cells was dependent on the extracellularly supplied MgATP. In the intact cells, both caffeine and norepinephrine increased 45Ca2+ efflux. In the skinned cells, caffeine increased 45Ca2+ efflux, whereas norepinephrine did not. The caffeine-releasable 45Ca2+ uptake fraction in the skinned cells appeared at 3 X 10(-7) M Ca2+, increased gradually with the increase in free Ca2+ concentration, and reached a plateau at 1 X 10(-5) M Ca2+. The 45Ca2+ uptake fraction, which was significantly suppressed by sodium azide, appeared at 1 X 10(-5) M Ca2+ and increased monotonically with increasing free Ca2+ concentration. The results suggest that the caffeine-sensitive Ca2+ store, presumably the sarcoplasmic reticulum, plays a physiological role by releasing Ca2+ in response to norepinephrine or caffeine and by buffering excessive Ca2+. The 45Ca2+ uptake by mitochondria appears too insensitive to be important under physiological conditions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  2. Bond M., Kitazawa T., Somlyo A. P., Somlyo A. V. Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol. 1984 Oct;355:677–695. doi: 10.1113/jphysiol.1984.sp015445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
  4. Chamley J. H., Campbell G. R., McConnell J. D., Gröschel-Stewart U. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res. 1977 Feb 14;177(4):503–522. doi: 10.1007/BF00220611. [DOI] [PubMed] [Google Scholar]
  5. Comte J., Maïsterrena B., Gautheron D. C. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim Biophys Acta. 1976 Jan 21;419(2):271–284. doi: 10.1016/0005-2736(76)90353-9. [DOI] [PubMed] [Google Scholar]
  6. Deth R., Casteels R. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J Gen Physiol. 1977 Apr;69(4):401–416. doi: 10.1085/jgp.69.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  8. Endo M., Yagi S., Iino M. Tension-pCa relation and sarcoplasmic reticulum responses in chemically skinned smooth muscle fibers. Fed Proc. 1982 May;41(7):2245–2250. [PubMed] [Google Scholar]
  9. Grover A. K., Kwan C. Y., Garfield R. E., McLean J., Fox J. E., Daniel E. E. Fractionation and Ca uptake studies on membranes of rabbit longitudinal and circular intestinal smooth muscle. Can J Physiol Pharmacol. 1980 Sep;58(9):1102–1113. doi: 10.1139/y80-165. [DOI] [PubMed] [Google Scholar]
  10. Hess M. L., Ford G. D. Calcium accumulation by subcellular fractions from vascular smooth muscle. J Mol Cell Cardiol. 1974 Jun;6(3):275–282. doi: 10.1016/0022-2828(74)90056-x. [DOI] [PubMed] [Google Scholar]
  11. Hirata M., Koga T. ATP-dependent Ca2+ accumulation in intracellular membranes of guinea pig macrophages after saponin treatment. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1544–1549. doi: 10.1016/0006-291x(82)91427-9. [DOI] [PubMed] [Google Scholar]
  12. Iino M. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments. J Physiol. 1981 Nov;320:449–467. doi: 10.1113/jphysiol.1981.sp013961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inamitsu T., Ohtsuki I. Characterization of ATP-dependent Ca2+ uptake by canine brain microsomes with saponin. Eur J Biochem. 1984 Nov 15;145(1):115–121. doi: 10.1111/j.1432-1033.1984.tb08529.x. [DOI] [PubMed] [Google Scholar]
  14. Itoh T., Kuriyama H., Suzuki H. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J Physiol. 1983 Apr;337:609–629. doi: 10.1113/jphysiol.1983.sp014645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James-Kracke M. R., Sloane B. F., Shuman H., Karp R., Somlyo A. P. Electron probe analysis of cultured vascular smooth muscle. J Cell Physiol. 1980 May;103(2):313–322. doi: 10.1002/jcp.1041030217. [DOI] [PubMed] [Google Scholar]
  17. Lau Y. H., Caswell A. H., Brunschwig J. P., Baerwald R. j., Garcia M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):540–546. [PubMed] [Google Scholar]
  18. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mueller E., van Breemen C. Role of intracellular Ca2+ sequestration in beta-adrenergic relaxation of a smooth muscle. Nature. 1979 Oct 25;281(5733):682–683. doi: 10.1038/281682a0. [DOI] [PubMed] [Google Scholar]
  20. Saida K. Intracellular Ca release in skinned smooth muscle. J Gen Physiol. 1982 Aug;80(2):191–202. doi: 10.1085/jgp.80.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saida K., Nonomura Y. Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers. J Gen Physiol. 1978 Jul;72(1):1–14. doi: 10.1085/jgp.72.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saida K., Van Breemen C. Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction. J Gen Physiol. 1984 Aug;84(2):307–318. doi: 10.1085/jgp.84.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saida K., van Breemen C. Characteristics of the norepinephrine-sensitive Ca2+ store in vascular smooth muscle. Blood Vessels. 1984;21(1):43–52. doi: 10.1159/000158493. [DOI] [PubMed] [Google Scholar]
  24. Scheid C. R., Fay F. S. Transmembrane 45Ca fluxes in isolated smooth muscle cells: basal Ca2+ fluxes. Am J Physiol. 1984 May;246(5 Pt 1):C422–C430. doi: 10.1152/ajpcell.1984.246.5.C422. [DOI] [PubMed] [Google Scholar]
  25. Somlyo A. P., Somlyo A. V., Devine C. E., Peters P. D., Hall T. A. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol. 1974 Jun;61(3):723–742. doi: 10.1083/jcb.61.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Somlyo A. P., Somlyo A. V., Shuman H. Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol. 1979 May;81(2):316–335. doi: 10.1083/jcb.81.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Somlyo A. P., Somlyo A. V., Shuman H., Endo M. Calcium and monovalent ions in smooth muscle. Fed Proc. 1982 Oct;41(12):2883–2890. [PubMed] [Google Scholar]
  28. Somlyo A. V., Somlyo A. P. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971 Nov 26;174(4012):955–958. doi: 10.1126/science.174.4012.955. [DOI] [PubMed] [Google Scholar]
  29. Stout M. A., Diecke F. P. 45Ca distribution and transport in saponin skinned vascular smooth muscle. J Pharmacol Exp Ther. 1983 Apr;225(1):102–111. [PubMed] [Google Scholar]
  30. Thyberg J., Palmberg L., Nilsson J., Ksiazek T., Sjölund M. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation. 1983;25(2):156–167. doi: 10.1111/j.1432-0436.1984.tb01351.x. [DOI] [PubMed] [Google Scholar]
  31. Vallières J., Scarpa A., Somlyo A. P. Subcellular fractions of smooth muscle. Isolation, substrate utilization and Ca++ transport by main pulmonary artery and mesenteric vein mitochondria. Arch Biochem Biophys. 1975 Oct;170(2):659–669. doi: 10.1016/0003-9861(75)90162-9. [DOI] [PubMed] [Google Scholar]
  32. Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wendt I. R., Stephenson D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 1983 Aug;398(3):210–216. doi: 10.1007/BF00657153. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto H., Kanaide H., Nakamura M. Metabolism of glycosaminoglycans of cultured rat aortic smooth muscle cells altered during subculture. Br J Exp Pathol. 1983 Apr;64(2):156–165. [PMC free article] [PubMed] [Google Scholar]
  35. Yamamoto H., van Breemen C. Inositol-1,4,5-trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem Biophys Res Commun. 1985 Jul 16;130(1):270–274. doi: 10.1016/0006-291x(85)90412-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES