Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Jun 1;91(6):861–896. doi: 10.1085/jgp.91.6.861

The organization of taste sensibilities in hamster chorda tympani nerve fibers

ME Frank, SL Bieber, DV Smith
PMCID: PMC2217629  PMID: 3047313

Abstract

Electrophysiological measurements of nerve impulse frequencies were used to explore the organization of taste sensibilities in single fibers of the hamster chorda tympani nerve. Moderately intense taste solutions that are either very similar or easily discriminated were applied to the anterior lingual surface. 40 response profiles or 13 stimulus activation patterns were considered variables and examined with multivariate statistical techniques. Three kinds of response profiles were seen in fibers that varied in their overall sensitivity to taste solutions. One profile (S) showed selectivity for sweeteners, a second (N) showed selectivity for sodium salts, and a third (H) showed sensitivity to salts, acids, and other compounds. Hierarchical cluster analysis indicated that profiles fell into discrete classes. Responses to many pairs of effective stimuli were covariant across profiles within a class, but some acidic stimuli had more idiosyncratic effects. Factor analysis of profiles identified two common factors, accounting for 77% of the variance. A unipolar factor was identified with the N profile, and a bipolar factor was identified with the S profile and its opposite, the H profile. Three stimulus activation patterns were elicited by taste solutions that varied in intensity of effect. Hierarchical cluster analysis indicated that the patterns fell into discrete classes. Factor analysis of patterns identified three common unipolar factors accounting for 82% of the variance. Eight stimuli (MgSO4, NH4Cl, KCl, citric acid, acetic acid, urea, quinine HCl, HCl) selectively activated fibers with H profiles, three stimuli (fructose, Na saccharin, sucrose) selectively activated fibers with S profiles, and two stimuli (NaNO3, NaCl) activated fibers with N profiles more strongly than fibers with H profiles. Stimuli that evoke different patterns taste distinct to hamsters. Stimuli that evoke the same pattern taste more similar. It was concluded that the hundreds of peripheral taste neurons that innervate the anterior tongue play one of three functional roles, providing information about one of three features that are shared by different chemical solutions.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEIDLER L. M. A theory of taste stimulation. J Gen Physiol. 1954 Nov 20;38(2):133–139. doi: 10.1085/jgp.38.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beidler L. M., Smallman R. L. Renewal of cells within taste buds. J Cell Biol. 1965 Nov;27(2):263–272. doi: 10.1083/jcb.27.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boudreau J. C., Alev N. Classification of chemoresponsive tongue units of the cat geniculated ganglion. Brain Res. 1973 May 17;54:157–175. doi: 10.1016/0006-8993(73)90042-5. [DOI] [PubMed] [Google Scholar]
  4. Boudreau J. C., Bradley B. E., Bierer P. R., Kruger S., Tsuchitani C. Single unit recordings from the geniculate ganglion of the facial nerve of the cat. Exp Brain Res. 1971 Nov 30;13(5):461–488. doi: 10.1007/BF00234278. [DOI] [PubMed] [Google Scholar]
  5. Boudreau J. C., Oravec J. J., Hoang N. K. Taste systems of goat geniculate ganglion. J Neurophysiol. 1982 Nov;48(5):1226–1242. doi: 10.1152/jn.1982.48.5.1226. [DOI] [PubMed] [Google Scholar]
  6. Cheal M., Dickey W. P., Jones L. B., Oakley B. Taste fiber responses during reinnervation of fungiform papillae. J Comp Neurol. 1977 Apr 15;172(4):627–646. doi: 10.1002/cne.901720406. [DOI] [PubMed] [Google Scholar]
  7. Cheal M., Oakley B. Regeneration of fungiform taste buds: temporal and spatial characteristics. J Comp Neurol. 1977 Apr 15;172(4):609–626. doi: 10.1002/cne.901720405. [DOI] [PubMed] [Google Scholar]
  8. Conger A. D., Wells M. A. Radiation and aging effect on taste structure and function. Radiat Res. 1969 Jan;37(1):31–49. [PubMed] [Google Scholar]
  9. Delay R. J., Kinnamon J. C., Roper S. D. Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J Comp Neurol. 1986 Nov 8;253(2):242–252. doi: 10.1002/cne.902530210. [DOI] [PubMed] [Google Scholar]
  10. Erickson R. P., Covey E., Doetsch G. S. Neuron and stimulus typologies in the rat gustatory system. Brain Res. 1980 Sep 8;196(2):513–519. doi: 10.1016/0006-8993(80)90417-5. [DOI] [PubMed] [Google Scholar]
  11. Farbman A. I. Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet. 1980 Jul;13(4):349–357. doi: 10.1111/j.1365-2184.1980.tb00474.x. [DOI] [PubMed] [Google Scholar]
  12. Fernández E. F., Doel R. P. Ganglionic character of mesencephalic trigeminal neurons in the turtle Mauremys caspica. Anat Rec. 1984 Oct;210(2):365–373. doi: 10.1002/ar.1092100212. [DOI] [PubMed] [Google Scholar]
  13. Frank M. E., Contreras R. J., Hettinger T. P. Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat. J Neurophysiol. 1983 Oct;50(4):941–960. doi: 10.1152/jn.1983.50.4.941. [DOI] [PubMed] [Google Scholar]
  14. Frank M. E. Sensory physiology of taste and smell discriminations using conditioned food aversion methodology. Ann N Y Acad Sci. 1985;443:89–99. doi: 10.1111/j.1749-6632.1985.tb27065.x. [DOI] [PubMed] [Google Scholar]
  15. Frank M. An analysis of hamster afferent taste nerve response functions. J Gen Physiol. 1973 May;61(5):588–618. doi: 10.1085/jgp.61.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Graziadei P. P., Graziadei G. A. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol. 1979 Feb;8(1):1–18. doi: 10.1007/BF01206454. [DOI] [PubMed] [Google Scholar]
  17. Hanamori T., Smith D. V. Central projections of the hamster superior laryngeal nerve. Brain Res Bull. 1986 Feb;16(2):271–279. doi: 10.1016/0361-9230(86)90042-0. [DOI] [PubMed] [Google Scholar]
  18. Hellekant G., Gopal V., Ninomiya Y. Decline and disappearance of taste response after interruption of the chorda tympani proper nerve of the rat. Acta Physiol Scand. 1979 Jan;105(1):52–57. doi: 10.1111/j.1748-1716.1979.tb06313.x. [DOI] [PubMed] [Google Scholar]
  19. Hill D. L., Mistretta C. M., Bradley R. M. Developmental changes in taste response characteristics of rat single chorda tympani fibers. J Neurosci. 1982 Jun;2(6):782–790. doi: 10.1523/JNEUROSCI.02-06-00782.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hyman A. M., Frank M. E. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani. J Gen Physiol. 1980 Aug;76(2):125–142. doi: 10.1085/jgp.76.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hyman A. M., Frank M. E. Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli. J Gen Physiol. 1980 Aug;76(2):143–173. doi: 10.1085/jgp.76.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jakinovich W., Jr Taste aversion to sugars by the gerbil. Physiol Behav. 1982 Jun;28(6):1065–1071. doi: 10.1016/0031-9384(82)90176-7. [DOI] [PubMed] [Google Scholar]
  23. Kitada Y., Bradley R. M., Mistretta C. M. Maintenance of chorda tympani salt taste responses after nerve transection in rats. Brain Res. 1984 Jun 4;302(1):163–170. doi: 10.1016/0006-8993(84)91295-2. [DOI] [PubMed] [Google Scholar]
  24. Mason J. R., Reidinger R. F., Jr, Stewart C. N. Profiling, mimicking and masking the flavor of a selected rodenticide. Physiol Behav. 1985 Jul;35(1):127–134. doi: 10.1016/0031-9384(85)90184-2. [DOI] [PubMed] [Google Scholar]
  25. McBurney D. H., Gent J. F. On the nature of taste qualities. Psychol Bull. 1979 Jan;86(1):151–167. [PubMed] [Google Scholar]
  26. Miller I. J., Jr Peripheral interactions among single papilla inputs to gustatory nerve fibers. J Gen Physiol. 1971 Jan;57(1):1–25. doi: 10.1085/jgp.57.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller I. J., Jr, Smith D. V. Quantitative taste bud distribution in the hamster. Physiol Behav. 1984 Feb;32(2):275–285. doi: 10.1016/0031-9384(84)90142-2. [DOI] [PubMed] [Google Scholar]
  28. Mistretta C. M., Bradley R. M. Neural basis of developing salt taste sensation: response changes in fetal, postnatal, and adult sheep. J Comp Neurol. 1983 Apr 1;215(2):199–210. doi: 10.1002/cne.902150207. [DOI] [PubMed] [Google Scholar]
  29. Murphy C., Cardello A. V., Brand J. Tastes of fifteen halide salts following water and NaCl: anion and cation effects. Physiol Behav. 1981 Jun;26(6):1083–1095. doi: 10.1016/0031-9384(81)90213-4. [DOI] [PubMed] [Google Scholar]
  30. Nagai T., Ueda K. Stochastic properties of gustatory impulse discharges in rat chorda tympani fibers. J Neurophysiol. 1981 Mar;45(3):574–592. doi: 10.1152/jn.1981.45.3.574. [DOI] [PubMed] [Google Scholar]
  31. Ninomiya Y., Mizukoshi T., Higashi T., Katsukawa H., Funakoshi M. Gustatory neural responses in three different strains of mice. Brain Res. 1984 Jun 8;302(2):305–314. doi: 10.1016/0006-8993(84)90244-0. [DOI] [PubMed] [Google Scholar]
  32. Nowlis G. H. Conditioned stimulus intensity and acquired alimentary aversions in the rat. J Comp Physiol Psychol. 1974 Jun;86(6):1173–1184. doi: 10.1037/h0037644. [DOI] [PubMed] [Google Scholar]
  33. Nowlis G. H., Frank M. E., Pfaffmann C. Specificity of acquired aversions to taste qualities in hamsters and rats. J Comp Physiol Psychol. 1980 Oct;94(5):932–942. doi: 10.1037/h0077809. [DOI] [PubMed] [Google Scholar]
  34. Oakley B., Chu J. S., Jones L. B. Axonal transport maintains taste responses. Brain Res. 1981 Sep 28;221(2):289–298. doi: 10.1016/0006-8993(81)90778-2. [DOI] [PubMed] [Google Scholar]
  35. Pritchard T. C., Scott T. R. Amino acids as taste stimuli. II. Quality coding. Brain Res. 1982 Dec 16;253(1-2):93–104. doi: 10.1016/0006-8993(82)90676-x. [DOI] [PubMed] [Google Scholar]
  36. Rodieck R. W., Brening R. K. Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol. 1983;23(3-4):121–164. doi: 10.1159/000121492. [DOI] [PubMed] [Google Scholar]
  37. Schiffman S. S., Erickson R. P. The issue of primary tastes versus a taste continuum. Neurosci Biobehav Rev. 1980 Summer;4(2):109–117. doi: 10.1016/0149-7634(80)90009-3. [DOI] [PubMed] [Google Scholar]
  38. Schiffman S. S., Mcelroy A. E., Erickson R. P. The range of taste quality of sodium salts. Physiol Behav. 1980 Feb;24(2):217–224. doi: 10.1016/0031-9384(80)90077-3. [DOI] [PubMed] [Google Scholar]
  39. Schiffman S. S., Reilly D. A., Clark T. B., 3rd Qualitative differences among sweeteners. Physiol Behav. 1979 Jul;23(1):1–9. doi: 10.1016/0031-9384(79)90113-6. [DOI] [PubMed] [Google Scholar]
  40. Silver W. L., Mason J. R., Marshall D. A., Maruniak J. A. Rat trigeminal, olfactory and taste responses after capsaicin desensitization. Brain Res. 1985 Apr 29;333(1):45–54. doi: 10.1016/0006-8993(85)90122-2. [DOI] [PubMed] [Google Scholar]
  41. Sloan H. E., Hughes S. E., Oakley B. Chronic impairment of axonal transport eliminates taste responses and taste buds. J Neurosci. 1983 Jan;3(1):117–123. doi: 10.1523/JNEUROSCI.03-01-00117.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smith D. V., Theodore R. M. Conditioned taste aversions: generalization to taste mixtures. Physiol Behav. 1984 Jun;32(6):983–989. doi: 10.1016/0031-9384(84)90289-0. [DOI] [PubMed] [Google Scholar]
  43. Smith D. V., Travers J. B., Van Buskirk R. L. Brainstem correlates of gustatory similarity in the hamster. Brain Res Bull. 1979 May-Jun;4(3):359–372. doi: 10.1016/s0361-9230(79)80014-3. [DOI] [PubMed] [Google Scholar]
  44. Smith D. V., Van Buskirk R. L., Travers J. B., Bieber S. L. Coding of taste stimuli by hamster brain stem neurons. J Neurophysiol. 1983 Aug;50(2):541–558. doi: 10.1152/jn.1983.50.2.541. [DOI] [PubMed] [Google Scholar]
  45. Smith D. V., Van Buskirk R. L., Travers J. B., Bieber S. L. Gustatory neuron types in hamster brain stem. J Neurophysiol. 1983 Aug;50(2):522–540. doi: 10.1152/jn.1983.50.2.522. [DOI] [PubMed] [Google Scholar]
  46. Travers J. B., Smith D. V. Gustatory sensitivities in neurons of the hamster nucleus tractus solitarius. Sens Processes. 1979 Mar;3(1):1–26. [PubMed] [Google Scholar]
  47. Travers S. P., Pfaffmann C., Norgren R. Convergence of lingual and palatal gustatory neural activity in the nucleus of the solitary tract. Brain Res. 1986 Feb 19;365(2):305–320. doi: 10.1016/0006-8993(86)91642-2. [DOI] [PubMed] [Google Scholar]
  48. Travers S. P., Smith D. V. Responsiveness of neurons in the hamster parabrachial nuclei to taste mixtures. J Gen Physiol. 1984 Aug;84(2):221–250. doi: 10.1085/jgp.84.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Van Buskirk R. L., Smith D. V. Taste sensitivity of hamster parabrachial pontine neurons. J Neurophysiol. 1981 Jan;45(1):144–171. doi: 10.1152/jn.1981.45.1.144. [DOI] [PubMed] [Google Scholar]
  50. Whitehead M. C. Anatomy of the gustatory system in the hamster: synaptology of facial afferent terminals in the solitary nucleus. J Comp Neurol. 1986 Feb 1;244(1):72–85. doi: 10.1002/cne.902440106. [DOI] [PubMed] [Google Scholar]
  51. Whitehead M. C., Frank M. E. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Neurol. 1983 Nov 10;220(4):378–395. doi: 10.1002/cne.902200403. [DOI] [PubMed] [Google Scholar]
  52. Yamamoto T., Yuyama N., Kato T., Kawamura Y. Gustatory responses of cortical neurons in rats. II. Information processing of taste quality. J Neurophysiol. 1985 Jun;53(6):1356–1369. doi: 10.1152/jn.1985.53.6.1356. [DOI] [PubMed] [Google Scholar]
  53. Yamamoto T., Yuyama N., Kato T., Kawamura Y. Gustatory responses of cortical neurons in rats. III. Neural and behavioral measures compared. J Neurophysiol. 1985 Jun;53(6):1370–1386. doi: 10.1152/jn.1985.53.6.1370. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES