Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Oct;132(1):8–12. doi: 10.1128/jb.132.1.8-12.1977

[3H] dihydrostreptomycin accumulation and binding to ribosomes in Rhizobium mutants with different levels of streptomycin resistance.

I Zelazna-Kowalska
PMCID: PMC221819  PMID: 72064

Abstract

Rhizobium trifolii B1, a symbiotic nitrogen fixer, is sensitive to streptomycin (10 microgram/ml) and spontaneously produces spheroplast-like forms during cultivation. Streptomycin-resistant mutants selected with high doses of antibiotic (1,000 microgram/ml) showed pleiotropic changes, including loss of spheroplast formation and infectivity to plants, whereas mutants selected with low doses of streptomycin (10 to 100 microgram/ml) retained properties of parent strain B1 (I. Zelazna-Kowalska, Acta Microbiol. Pol., in press). The present studies revealed that strain B1 and its mutant with a high level of streptomycin resistance, B1 strH, accumulated the antibiotic at similar rates. Mutant B1 strL, with a low level of streptomycin resistance (up to 100 microgram/ml), accumulated the antibiotic at a lower rate. Ribosomes isolated from strains B1 and B2 strL bound [3H]dihydrostreptomycin, whereas those from strain B1 strH did not. These observations indicate that, in R. trifolii B1, mutation to a high level of streptomycin resistance affects ribosomal structure, whereas low-level resistance involves a change in membrane permeability.

Full text

PDF
8

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAND N., DAVIS B. D. Damage by streptomycin to the cell membrane of Escherichia coli. Nature. 1960 Jan 2;185:22–23. doi: 10.1038/185022a0. [DOI] [PubMed] [Google Scholar]
  2. Andry K., Bockrath R. C. Dihydrostreptomycin accumulation in E. coli. Nature. 1974 Oct 11;251(5475):534–536. doi: 10.1038/251534a0. [DOI] [PubMed] [Google Scholar]
  3. Apirion D., Schlessinger D. The loss of phenotypic suppression in streptomycin-resistant mutants. Proc Natl Acad Sci U S A. 1967 Jul;58(1):206–212. doi: 10.1073/pnas.58.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biswas D. K., Gorini L. The attachment site of streptomycin to the 30S ribosomal subunit. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2141–2144. doi: 10.1073/pnas.69.8.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson K., Bockrath R. C. Physiological Streptomycin Resistance in a Multiauxotroph of Escherichia coli Strain 15 T. J Bacteriol. 1970 Dec;104(3):1294–1298. doi: 10.1128/jb.104.3.1294-1298.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakrabarti S. L., Maitra P. K. Development of auxotrophy by streptomycin-resistant mutation. J Bacteriol. 1974 Jun;118(3):1179–1180. doi: 10.1128/jb.118.3.1179-1180.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakrabarti S., Gorini L. Growth of bacteriophages MS2 and T7 on streptomycin-resistant mutants of Escherichia coli. J Bacteriol. 1975 Feb;121(2):670–674. doi: 10.1128/jb.121.2.670-674.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Couturier M., Desmet L., Thomas R. High pleiotropy of streptomycin mutations in Escherichia coli. Biochem Biophys Res Commun. 1964 Jun 15;16(3):244–248. doi: 10.1016/0006-291x(64)90333-x. [DOI] [PubMed] [Google Scholar]
  9. Dubnau D., Smith I., Marmur J. Gene conservation in Bacillus species. II. The location of genes concerned with the synthesis of ribosomal components and soluble RNA. Proc Natl Acad Sci U S A. 1965 Sep;54(3):724–730. doi: 10.1073/pnas.54.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duncan M. J., Gorini L. A ribonucleoprotein precursor of both the 30S and 50S ribosomal sunbunits of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1533–1537. doi: 10.1073/pnas.72.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garvin R. T., Biswas D. K., Gorini L. The effects of streptomycin or dihydrostreptomycin binding to 16S RNA or to 30S ribosomal subunits. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3814–3818. doi: 10.1073/pnas.71.10.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HURWITZ C., ROSANO C. L. Accumulation of label from C14-streptomycin by Escherichia coli. J Bacteriol. 1962 Jun;83:1193–1201. doi: 10.1128/jb.83.6.1193-1201.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KOGUT M., LIGHTBOWN J. W., ISAACSON P. EFFECTS OF DIHYDROSTREPTOMYCIN TREATMENT ON THE GROWTH OF ESCHERICHIA COLI AFTER REMOVAL OF EXTRACELLULAR ANTIBIOTIC. J Gen Microbiol. 1965 May;39:165–183. doi: 10.1099/00221287-39-2-165. [DOI] [PubMed] [Google Scholar]
  14. Kogut M., Lightbown J. W., Isaacson P. The intracellular accumulation of 14-C-streptomycin by Escherichia coli strain B in relation to its growth-inhibitory effect. J Gen Microbiol. 1966 Mar;42(3):333–344. doi: 10.1099/00221287-42-3-333. [DOI] [PubMed] [Google Scholar]
  15. LEDERBERG E. M., CAVALLI-SFORZA L., LEDERBERG J. INTERACTION OF STREPTOMYCIN AND A SUPPRESSOR FOR GALACTOSE FERMENTATION IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Apr;51:678–682. doi: 10.1073/pnas.51.4.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moellering R. C., Jr, Weinberg A. N. Studies on antibiotic syngerism against enterococci. II. Effect of various antibiotics on the uptake of 14 C-labeled streptomycin by enterococci. J Clin Invest. 1971 Dec;50(12):2580–2584. doi: 10.1172/JCI106758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nomura M. Bacterial ribosome. Bacteriol Rev. 1970 Sep;34(3):228–277. doi: 10.1128/br.34.3.228-277.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ozaki M., Mizushima S., Nomura M. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature. 1969 Apr 26;222(5191):333–339. doi: 10.1038/222333a0. [DOI] [PubMed] [Google Scholar]
  20. PLOTZ P. H., DUBIN D. T., DAVIS B. D. Influence of salts on the uptake of streptomycin by Escherichia coli. Nature. 1961 Sep 23;191:1324–1325. doi: 10.1038/1911324a0. [DOI] [PubMed] [Google Scholar]
  21. Prizant E., Kogut M. In vivo and in vitro binding of dihydrostreptomycin to Escherichia coli ribosomes. FEBS Lett. 1975 Jan 15;50(1):37–42. doi: 10.1016/0014-5793(75)81035-0. [DOI] [PubMed] [Google Scholar]
  22. Roberts L. M., Reeve E. C. Two mutations giving low-level streptomycin resistance in Escherichia coli K 12. Genet Res. 1970 Dec;16(3):359–365. doi: 10.1017/s0016672300002640. [DOI] [PubMed] [Google Scholar]
  23. Rotheim M. B., Ravin A. W. Inactivation and reversion of multisite streptomycin resistance mutations of Pneumococcus. Mol Gen Genet. 1968;103(2):159–175. doi: 10.1007/BF00427143. [DOI] [PubMed] [Google Scholar]
  24. SANDERSON K. E., DEMEREC M. THE LINKAGE MAP OF SALMONELLA TYPHIMURIUM. Genetics. 1965 Jun;51:897–913. doi: 10.1093/genetics/51.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schreiner G., Nierhaus K. H. Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J Mol Biol. 1973 Nov 25;81(1):71–82. doi: 10.1016/0022-2836(73)90248-9. [DOI] [PubMed] [Google Scholar]
  26. Smith I., Goldthwaite C., Dubnau D. The genetics of ribosomes in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1969;34:85–89. doi: 10.1101/sqb.1969.034.01.013. [DOI] [PubMed] [Google Scholar]
  27. Staal S. P., Hoch J. A. Conditional dihydrostreptomycin resistance in Bacillus subtilis. J Bacteriol. 1972 Apr;110(1):202–207. doi: 10.1128/jb.110.1.202-207.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Unowsky J., Rachmeler M. Mechanisms of antibiotic resistance determined by resistance-transfer factors. J Bacteriol. 1966 Aug;92(2):358–365. doi: 10.1128/jb.92.2.358-365.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vogel Z., Vogel T., Elson D., Zamir A. Ribosome activation and the binding of dihydrostreptomycin: effect of polynucleotides and temperature on activation. J Mol Biol. 1970 Dec 14;54(2):379–386. doi: 10.1016/0022-2836(70)90436-5. [DOI] [PubMed] [Google Scholar]
  30. Yamada T., Davies J. A genetic and biochemical study of streptomycin- and spectinomycin-resistance in Salmonella typhimurium. Mol Gen Genet. 1971;110(3):197–210. doi: 10.1007/BF00337833. [DOI] [PubMed] [Google Scholar]
  31. Zimmermann R. A., Moellering R. C., Jr, Weinberg A. N. Mechanism of resistance to antibiotic synergism in enterococci. J Bacteriol. 1971 Mar;105(3):873–879. doi: 10.1128/jb.105.3.873-879.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES