Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Oct;132(1):224–232. doi: 10.1128/jb.132.1.224-232.1977

Sulfate Uptake in Saccharomyces cerevisiae: Biochemical and Genetic Study

Annick Breton 1, Yolande Surdin-Kerjan 1
PMCID: PMC221848  PMID: 199574

Abstract

Sulfate uptake is the first step of the sulfate assimilation pathway, which has been shown in our laboratory to be part of the methionine biosynthetic pathway. Kinetic study of sulfate uptake has shown a biphasic curve in a Lineweaver-Burk plot. The analysis of this plot indicates that two enzymes participate in sulfate uptake. One (permease I) has a high affinity for the substrate (Km = 0.005 mM); the other (permease II) shows a much lower affinity for sulfate (Km = 0.35 mM). Regulation of the synthesis of both permeases is under the control of exogenous methionine or S-adenosylmethionine. It was shown, moreover, that synthesis of sulfate permeases is coordinated with the synthesis of the other methionine biosynthetic enzymes thus far studied in our laboratory. An additional specific regulation of sulfate permeases by inhibition of their activity by endogenous sulfate and adenosyl phosphosulfate (an intermediate metabolite in sulfate assimilation) has been shown. A mutant unable to concentrate sulfate has been selected. This strain carried mutations in two independent genes. These two mutations, separated in two different strains, lead to modified kinetics of sulfate uptake. The study of these strains leads us to postulate that there is an interaction in situ between the products of these two genes.

Full text

PDF
224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cherest H., Surdin-Kerjan Y., Antoniewski J., Robichon-Szulmajster H. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J Bacteriol. 1973 Jun;114(3):928–933. doi: 10.1128/jb.114.3.928-933.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherest H., Surdin-Kerjan Y., Robichon-Szulmajster H. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2. J Bacteriol. 1971 Jun;106(3):758–772. doi: 10.1128/jb.106.3.758-772.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEVITO P. C., DREYFUSS J. METABOLIC REGULATION OF ADENOSINE TRIPHOSPHATE SULFURYLASE IN YEAST. J Bacteriol. 1964 Nov;88:1341–1348. doi: 10.1128/jb.88.5.1341-1348.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghei O. K., Kay W. W. Succinate transport in Bacillus subtilis. Dependence on inorganic anions. Biochim Biophys Acta. 1975 Sep 2;401(3):440–457. doi: 10.1016/0005-2736(75)90242-4. [DOI] [PubMed] [Google Scholar]
  7. Lukaszkiewicz Z., Paszewski A. Hyper-repressible operator-type mutant in sulphate permease gene of Aspergillus nidulans. Nature. 1976 Jan 29;259(5541):337–338. doi: 10.1038/259337a0. [DOI] [PubMed] [Google Scholar]
  8. Lukaszkiewicz Z., Pieniazek N. J. Mutations increasing the specificity of the sulphate permease in Aspergillus nidulans. Bull Acad Pol Sci Biol. 1972;20(12):833–836. [PubMed] [Google Scholar]
  9. Marzluf G. A. Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa. Arch Biochem Biophys. 1970 May;138(1):254–263. doi: 10.1016/0003-9861(70)90306-1. [DOI] [PubMed] [Google Scholar]
  10. Marzluf G. A. Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of chromate-resistant and sulfate transport-negative mutants. J Bacteriol. 1970 Jun;102(3):716–721. doi: 10.1128/jb.102.3.716-721.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marzluf G. A. Regulation of sulfate transport in neurospora by transinhibition and by inositol depletion. Arch Biochem Biophys. 1973 May;156(1):244–254. doi: 10.1016/0003-9861(73)90362-7. [DOI] [PubMed] [Google Scholar]
  12. Masselot M., De Robichon-Szulmajster H. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet. 1975 Aug 5;139(2):121–132. doi: 10.1007/BF00264692. [DOI] [PubMed] [Google Scholar]
  13. Masselot M., Robichon-Szulmajster H. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae. Genetics. 1972 Aug;71(4):535–550. doi: 10.1093/genetics/71.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCready R. G., Din G. A. Active sulfate transport in Saccharomyces cerevisiae. FEBS Lett. 1974 Jan 15;38(3):361–363. doi: 10.1016/0014-5793(74)80092-x. [DOI] [PubMed] [Google Scholar]
  15. Medveczky N., Rosenberg H. Phosphate transport in Escherichia coli. Biochim Biophys Acta. 1971 Aug 13;241(2):494–506. doi: 10.1016/0005-2736(71)90048-4. [DOI] [PubMed] [Google Scholar]
  16. Reid K. G., Utech N. M., Holden J. T. Multiple transport components for dicarboxylic amino acids in Streptococcus faecalis. J Biol Chem. 1970 Oct 25;245(20):5261–5272. [PubMed] [Google Scholar]
  17. Roberts K. R., Marzluf G. A. The specific interaction of chromate with the dual sulfate permease systems of Neurospora crassa. Arch Biochem Biophys. 1971 Feb;142(2):651–659. doi: 10.1016/0003-9861(71)90531-5. [DOI] [PubMed] [Google Scholar]
  18. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
  19. Spence K. D. Mutation of Saccharomyces cerevisiae preventing uptake of S-adenosylmethionine. J Bacteriol. 1971 May;106(2):325–330. doi: 10.1128/jb.106.2.325-330.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES