Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Nov;132(2):497–504. doi: 10.1128/jb.132.2.497-504.1977

Membrane lipid biosynthesis in Acholeplasma laidlawii B: de novo biosynthesis of saturated fatty acids by growing cells.

Y Saito, J R Silvius, N McElhaney
PMCID: PMC221888  PMID: 914777

Abstract

The de novo biosynthesis of fatty acids of 12 to 18 carbons from precursors of 5 carbons or fewer has been demonstrated in Acholeplasma laidlawii B. Radiolabeling experiments indicated that the normal primers for the synthesis of the even- and odd-chain fatty acids are acetate and propionate or valerate, respectively. Saturated straight-chain monomethyl-branched fatty acids of up to five carbons were readily utilized as primers, wheras more highly branched species and those possessing halogen substituents or unsaturation were not utilized. At primer concentrations of 1 to 3 mM, up to 80% of the total cellular lipid fatty acids were derived from exogenous primer. The mean chain length of the exogenous primer-derived fatty acids rose with increasing primer incorporation for methyl-branched short-chain fatty acids but was invariant for propionate. The products of de novo biosynthesis varied only slightly with temperature or cholesterol supplementation, suggesting that de novo biosynthesis is not directly influenced by membrane fluidity. Cerulenin inhibited de novo biosynthesis in a fashion that suggests the presence of two beta-ketoacyl thioester synthetases, which differ in substrate chain length specificity and in susceptibility to inhibition by the antibiotic.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  2. Davis M. T., Silbert D. F. Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12. Biochim Biophys Acta. 1974 Dec 10;373(2):224–241. doi: 10.1016/0005-2736(74)90147-3. [DOI] [PubMed] [Google Scholar]
  3. LYNN R. J. Oxidative metabolism of pleuropneumonialike organisms. Ann N Y Acad Sci. 1960 Jan 15;79:538–542. doi: 10.1111/j.1749-6632.1960.tb42720.x. [DOI] [PubMed] [Google Scholar]
  4. McElhaney R. N. The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. J Mol Biol. 1974 Mar 25;84(1):145–157. doi: 10.1016/0022-2836(74)90218-6. [DOI] [PubMed] [Google Scholar]
  5. Nomura S., Horiuchi T., Omura S., Hata T. The action mechanism of cerulenin. I. Effect of cerulenin on sterol and fatty acid biosynthesis in yeast. J Biochem. 1972 May;71(5):783–796. doi: 10.1093/oxfordjournals.jbchem.a129827. [DOI] [PubMed] [Google Scholar]
  6. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Panos C., Leon O. Replacement of the octadecenoic acid growth-requirement for Acholeplasma laidlawii A by cis-9,10-methylenehexadecanoic acid, a cyclopropane fatty acid. J Gen Microbiol. 1974 Jan;80(1):93–100. doi: 10.1099/00221287-80-1-93. [DOI] [PubMed] [Google Scholar]
  8. Panos C., Rottem S. Incorporation and elongation of fatty acid isomers by Mycoplasma laidlawii A. Biochemistry. 1970 Jan 20;9(2):407–412. doi: 10.1021/bi00804a030. [DOI] [PubMed] [Google Scholar]
  9. Pollack J. D., Razin S., Pollack M. E., Cleverdon R. C. Fractionation of mycoplasma cells for enzyme localization. Life Sci. 1965 May;4(9):973–977. doi: 10.1016/0024-3205(65)90200-6. [DOI] [PubMed] [Google Scholar]
  10. Pollack J. D., Tourtellotte M. E. Synthesis of saturated long chain fatty acids from sodium acetate-1-C14 by Mycoplasma. J Bacteriol. 1967 Feb;93(2):636–641. doi: 10.1128/jb.93.2.636-641.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rottem S., Panos C. The synthesis of long-chain fatty acids by a cell-free system from Mycoplasma laidlawii A. Biochemistry. 1970 Jan 6;9(1):57–63. doi: 10.1021/bi00803a008. [DOI] [PubMed] [Google Scholar]
  12. SALEM L. The role of long-range forces in the cohesion of lipoproteins. Can J Biochem Physiol. 1962 Sep;40:1287–1298. [PubMed] [Google Scholar]
  13. Saito Y., McElhaney R. N. Membrane lipid biosynthesis in Acholeplasma laidlawii B: incorporation of exogenous fatty acids into membrane glyco- and phospholipids by growing cells. J Bacteriol. 1977 Nov;132(2):485–496. doi: 10.1128/jb.132.2.485-496.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silvius J. R., Saito Y., McElhaney R. N. Membrane lipid biosynthesis in Acholeplasma laidlawii B. Investigations into the in vivo regulation of the quantity and hydrocarbon chain lengths of de novo biosynthesized fatty aicds in response to exogenously supplied fatty acids. Arch Biochem Biophys. 1977 Aug;182(2):455–464. doi: 10.1016/0003-9861(77)90526-4. [DOI] [PubMed] [Google Scholar]
  15. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
  17. Varanasi U., Malins D. C. Ester and ether-linked lipids in the mandibular canal of a porpoise (Phocoena phocoena). Occurrence of isovaleric acid in glycerolipids. Biochemistry. 1970 Nov 10;9(23):4576–4579. doi: 10.1021/bi00825a017. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES