Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Nov;132(2):532–540. doi: 10.1128/jb.132.2.532-540.1977

Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization.

W J O'Brien, F E Frerman
PMCID: PMC221893  PMID: 334745

Abstract

The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARRIGONI O., SINGER T. P. Limitations of the phenazine methosulphate assay for succinic and related dehydrogenases. Nature. 1962 Mar 31;193:1256–1258. doi: 10.1038/1931256a0. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
  5. Binstock J. F., Pramanik A., Schulz H. Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Feb;74(2):492–495. doi: 10.1073/pnas.74.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clinkenbeard K. D., Sugiyama T., Moss J., Reed W. D., Lane M. D. Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian liver. J Biol Chem. 1973 Apr 10;248(7):2275–2284. [PubMed] [Google Scholar]
  7. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feigenbaum J., Schulz H. Thiolases of Escherichia coli: purification and chain length specificities. J Bacteriol. 1975 May;122(2):407–411. doi: 10.1128/jb.122.2.407-411.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frerman F. E., Bennett W. Studies on the uptake of fatty acids by Escherichia coli. Arch Biochem Biophys. 1973 Nov;159(1):434–443. doi: 10.1016/0003-9861(73)90471-2. [DOI] [PubMed] [Google Scholar]
  10. Jones J. A., Blecher M. Synthesis and characterization of 3-ketohexadecanoic acid-1-14-C, DL-3-hydroxyhexadecanoic acid-1-14-C, and trans-2-hexadecenoic acid-1-14-C. J Lipid Res. 1966 May;7(3):422–426. [PubMed] [Google Scholar]
  11. KORNBERG A., PRICER W. E., Jr Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J Biol Chem. 1953 Sep;204(1):329–343. [PubMed] [Google Scholar]
  12. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Mazzei Y., Negrel R., Ailhaud G. Purification and some properties of thiolase from Escherichia coli. Biochim Biophys Acta. 1970 Oct 14;220(1):129–131. doi: 10.1016/0005-2744(70)90238-x. [DOI] [PubMed] [Google Scholar]
  15. O'Brien W. J., Frerman F. E. A mutant of Escherichia coli with altered inducer specificity for the fad regulon. Biochem Biophys Res Commun. 1973 Sep 18;54(2):697–703. doi: 10.1016/0006-291x(73)91479-4. [DOI] [PubMed] [Google Scholar]
  16. Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
  17. Overath P., Raufuss E. M. The induction of the enzymes of fatty acid degradation in Escherichia coli. Biochem Biophys Res Commun. 1967 Oct 11;29(1):28–33. doi: 10.1016/0006-291x(67)90535-9. [DOI] [PubMed] [Google Scholar]
  18. SILLIKER J. H., RITTENBERG S. C. Studies on the aerobic oxidation of fatty acids by bacteria, I. The nature of the enzymes, constitutive or adaptive. J Bacteriol. 1951 Jun;61(6):653–659. doi: 10.1128/jb.61.6.653-659.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samuel D., Estroumza J., Ailhaud G. Partial purification and properties of acyl-CoA synthetase of Escherichia coli. Eur J Biochem. 1970 Feb;12(3):576–582. doi: 10.1111/j.1432-1033.1970.tb00889.x. [DOI] [PubMed] [Google Scholar]
  20. Sartorelli L., Galzigna L., Rossi C. R., Gibson D. M. Influence of lecithin on the activity of the GTP-dependent acyl-coA synthetase. Biochem Biophys Res Commun. 1967 Jan 10;26(1):90–94. doi: 10.1016/0006-291x(67)90257-4. [DOI] [PubMed] [Google Scholar]
  21. Schulz H. Long chain enoyl coenzyme A hydratase from pig heart. J Biol Chem. 1974 May 10;249(9):2704–2709. [PubMed] [Google Scholar]
  22. Som K., Hardesty B. Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys. 1975 Feb;166(2):507–517. doi: 10.1016/0003-9861(75)90414-2. [DOI] [PubMed] [Google Scholar]
  23. VAGELOS P. R., ALBERTS A. W. Chemical synthesis of beta-ketooctanoyl coenzyme A. Anal Biochem. 1960 Jun;1:8–16. doi: 10.1016/0003-2697(60)90014-2. [DOI] [PubMed] [Google Scholar]
  24. Weeks G., Shapiro M., Burns R. O., Wakil S. J. Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J Bacteriol. 1969 Feb;97(2):827–836. doi: 10.1128/jb.97.2.827-836.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weiner J. H. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli. J Membr Biol. 1974;15(1):1–14. doi: 10.1007/BF01870078. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES