Abstract
Intrinsic and extrinsic optical signals recorded from the intact nerve terminals of vertebrate neurohypophyses were used to investigate the anatomical site and physiological mechanism of the antagonistic effects of aminoglycoside antibiotics on neurotransmission. Aminoglycoside antibiotics blocked the intrinsic light scattering signal closely associated with neurosecretion in the mouse neurohypophysis in a concentration-dependent manner with an IC50 of approximately 60 microM and the block was relieved by increasing [Ca2+]o. The rank order potency of different aminoglycoside antibiotics for blocking neurosecretion in this preparation was determined to be: neomycin greater than gentamicin = kanamycin greater than streptomycin. Optical recordings of rapid changes in membrane potential using voltage- sensitive dyes revealed that aminoglycoside antibiotics decreased the Ca(2+)-dependent after-hyperpolarization of the normal action potential and both the magnitude and after-hyperpolarization of the regenerative Ca2+ spike. The after-hyperpolarization results from a Ca-activated potassium conductance whose block by aminoglycoside antibiotics was also reversed by increased [Ca2+]o. These studies demonstrate that the capacity of aminoglycoside antibiotics to antagonize neurotransmission can be attributed to the block of Ca channels in the nerve terminal.
Full Text
The Full Text of this article is available as a PDF (865.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong C. M., Matteson D. R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science. 1985 Jan 4;227(4682):65–67. doi: 10.1126/science.2578071. [DOI] [PubMed] [Google Scholar]
- BRAZIL O. V., CORRADO A. P. The curariform action of streptomycin. J Pharmacol Exp Ther. 1957 Aug;120(4):452–459. [PubMed] [Google Scholar]
- Bossu J. L., Feltz A., Thomann J. M. Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch. 1985 Apr;403(4):360–368. doi: 10.1007/BF00589247. [DOI] [PubMed] [Google Scholar]
- Caputy A. J., Kim Y. I., Sanders D. B. The neuromuscular blocking effects of therapeutic concentrations of various antibiotics on normal rat skeletal muscle: a quantitative comparison. J Pharmacol Exp Ther. 1981 May;217(2):369–378. [PubMed] [Google Scholar]
- Carbone E., Lux H. D. A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J. 1984 Sep;46(3):413–418. doi: 10.1016/S0006-3495(84)84037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9;310(5977):501–502. doi: 10.1038/310501a0. [DOI] [PubMed] [Google Scholar]
- Chung L., Kaloyanides G., McDaniel R., McLaughlin A., McLaughlin S. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry. 1985 Jan 15;24(2):442–452. doi: 10.1021/bi00323a030. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Keynes R. D., Landowne D. Changes in axon light scattering that accompany the action potential: current-dependent components. J Physiol. 1972 Aug;224(3):727–752. doi: 10.1113/jphysiol.1972.sp009920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen L. B., Keynes R. D., Landowne D. Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components. J Physiol. 1972 Aug;224(3):701–725. doi: 10.1113/jphysiol.1972.sp009919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Pozo E., Baeyens J. M. Effects of calcium channel blockers on neuromuscular blockade induced by aminoglycoside antibiotics. Eur J Pharmacol. 1986 Aug 22;128(1-2):49–54. doi: 10.1016/0014-2999(86)90556-x. [DOI] [PubMed] [Google Scholar]
- Dretchen K. L., Gergis S. D., Sokoll M. D., Long J. P. Effect of various antibiotics on neuromuscular transmission. Eur J Pharmacol. 1972 May;18(2):201–203. doi: 10.1016/0014-2999(72)90243-9. [DOI] [PubMed] [Google Scholar]
- Dretchen K. L., Sokoll M. D., Gergis S. D., Long J. P. Relative effects of streptomycin on motor nerve terminal and endplate. Eur J Pharmacol. 1973 Apr;22(1):10–16. doi: 10.1016/0014-2999(73)90176-3. [DOI] [PubMed] [Google Scholar]
- Dunkley B., Sanghvi I., Goldstein G. Characterization of neuromuscular block produced by streptomycin. Arch Int Pharmacodyn Ther. 1973 Feb;201(2):213–223. [PubMed] [Google Scholar]
- ELMQVIST D., JOSEFSSON J. O. The nature of the neuromuscular block produced by neomycine. Acta Physiol Scand. 1962 Feb;54:105–110. doi: 10.1111/j.1748-1716.1962.tb02334.x. [DOI] [PubMed] [Google Scholar]
- Fedulova S. A., Kostyuk P. G., Veselovsky N. S. Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol. 1985 Feb;359:431–446. doi: 10.1113/jphysiol.1985.sp015594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiekers J. F. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. I. Presynaptic considerations. J Pharmacol Exp Ther. 1983 Jun;225(3):487–495. [PubMed] [Google Scholar]
- Gainer H., Wolfe S. A., Jr, Obaid A. L., Salzberg B. M. Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinology. 1986;43(5):557–563. doi: 10.1159/000124582. [DOI] [PubMed] [Google Scholar]
- Hino N., Ochi R., Yanagisawa T. Inhibition of the slow inward current and the time-dependent outward current of mammalian ventricular muscle by gentamicin. Pflugers Arch. 1982 Sep;394(3):243–249. doi: 10.1007/BF00589099. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C., Chen D., Barnes A., Katz R. L. Neuromuscular block by neomycin in the cat. Can Anaesth Soc J. 1976 Sep;23(5):527–533. doi: 10.1007/BF03005981. [DOI] [PubMed] [Google Scholar]
- Lee C., deSilva A. J. Acute and subchronic neuromuscular blocking characteristics of streptomycin: a comparison with neomycin. Br J Anaesth. 1979 May;51(5):431–434. doi: 10.1093/bja/51.5.431. [DOI] [PubMed] [Google Scholar]
- Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980 Aug;305:171–195. doi: 10.1113/jphysiol.1980.sp013357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981 Jun;315:549–567. doi: 10.1113/jphysiol.1981.sp013763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matteson D. R., Armstrong C. M. Na and Ca channels in a transformed line of anterior pituitary cells. J Gen Physiol. 1984 Mar;83(3):371–394. doi: 10.1085/jgp.83.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matteson D. R., Armstrong C. M. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 1986 Jan;87(1):161–182. doi: 10.1085/jgp.87.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
- Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
- Obaid A. L., Flores R., Salzberg B. M. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes. J Gen Physiol. 1989 Apr;93(4):715–729. doi: 10.1085/jgp.93.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obaid A. L., Orkand R. K., Gainer H., Salzberg B. M. Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis. J Gen Physiol. 1985 Apr;85(4):481–489. doi: 10.1085/jgp.85.4.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PITTINGER C. B., LONG J. P., MILLER J. R. The neuromuscular blocking action of neomycin: a concern of the anesthesiologist. Anesth Analg. 1958 Sep-Oct;37(5):276–282. [PubMed] [Google Scholar]
- Parsons T. D., Lagrutta A., White R. E., Hartzell H. C. Regulation of Ca2+ current in frog ventricular cardiomyocytes by 5'-guanylylimidodiphosphate and acetylcholine. J Physiol. 1991 Jan;432:593–620. doi: 10.1113/jphysiol.1991.sp018403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prado W. A., Corrado A. P., Marseillan R. F. Competitive antagonism between calcium and antibiotics at the neuromuscular junction. Arch Int Pharmacodyn Ther. 1978 Feb;231(2):297–307. [PubMed] [Google Scholar]
- Roberts W. M., Jacobs R. A., Hudspeth A. J. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci. 1990 Nov;10(11):3664–3684. doi: 10.1523/JNEUROSCI.10-11-03664.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rock C. O., Jackowski S. Thrombin- and nucleotide-activated phosphatidylinositol 4,5-bisphosphate phospholipase C in human platelet membranes. J Biol Chem. 1987 Apr 25;262(12):5492–5498. [PubMed] [Google Scholar]
- Salzberg B. M., Obaid A. L., Gainer H. Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis. J Gen Physiol. 1985 Sep;86(3):395–411. doi: 10.1085/jgp.86.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzberg B. M., Obaid A. L. Optical studies of the secretory event at vertebrate nerve terminals. J Exp Biol. 1988 Sep;139:195–231. doi: 10.1242/jeb.139.1.195. [DOI] [PubMed] [Google Scholar]
- Salzberg B. M., Obaid A. L., Senseman D. M., Gainer H. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature. 1983 Nov 3;306(5938):36–40. doi: 10.1038/306036a0. [DOI] [PubMed] [Google Scholar]
- Sastrasinh M., Knauss T. C., Weinberg J. M., Humes H. D. Identification of the aminoglycoside binding site in rat renal brush border membranes. J Pharmacol Exp Ther. 1982 Aug;222(2):350–358. [PubMed] [Google Scholar]
- Singh Y. N., Marshall I. G., Harvey A. L. Depression of transmitter release and postjunctional sensitivity during neuromuscular block produced by antibiotics. Br J Anaesth. 1979 Nov;51(11):1027–1033. doi: 10.1093/bja/51.11.1027. [DOI] [PubMed] [Google Scholar]
- Suarez-Kurtz G. Inhibition of membrane calcium activation by neomycin and streptomycin in crab muscle fibers. Pflugers Arch. 1974;349(4):337–349. doi: 10.1007/BF00588419. [DOI] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Reuben J. P. Effects of neomycin on calcium channel currents in clonal GH3 pituitary cells. Pflugers Arch. 1987 Nov;410(4-5):517–523. doi: 10.1007/BF00586535. [DOI] [PubMed] [Google Scholar]
- TIMMERMAN J. C., LONG J. P., PITTINGER C. B. Neuromuscular blocking properties of various antibiotic agents. Toxicology. 1959 May;1(3):299–304. doi: 10.1016/0041-008x(59)90114-0. [DOI] [PubMed] [Google Scholar]
- Vital Brazil O., Prado-Franceschi J. The nature of neuromuscular block produced by neomycin and gentamicin. Arch Int Pharmacodyn Ther. 1969 May;179(1):78–85. [PubMed] [Google Scholar]
- Wright J. M., Collier B. The effects of neomycin upon transmitter release and action. J Pharmacol Exp Ther. 1977 Mar;200(3):576–587. [PubMed] [Google Scholar]
