Abstract
We apply the diagrammatic method developed by Hill (1977. Free Energy Transduction in Biology. Academic Press, New York) to analyze single-file water transport. We use this formalism to derive explicit expressions for the osmotic and diffusive permeabilities Pf and Pd of a pore. We first consider a vacancy mechanism of transport analogous to the one-vacancy pore model previously used by Kohler and Heckmann (1979. J. Theor. Biol. 79:381-401). (a) For the general one-vacancy case, we find that the permeability ratio can be expressed by Pf/Pd = (Pf/Pd)eqf(wA,wB), where the second factor is a function of the water activities in the two adjoining compartments A and B. As a consequence, the permeability ratio in general can effectively differ from its value at equilibrium. We also find that n - 1 less than or equal to (Pf/Pd)eq less than or equal to n, a result already proposed by Kohler and Heckmann (1979. J. Theor. Biol. 79:381-401). (b) When vacancy states are transient intermediates, the model can be reduced to a diagram consisting of only fully occupied states. Such a diagram resembles the one describing a no-vacancy mechanism of transport (c), but in spite of the similarity the expressions obtained for the permeability coefficients still retain the basic relationships of the original (a) nonreduced one-vacancy model. (c) We then propose a kinetic description of a no-vacancy mechanism of single-file water transport. In this case, the expressions derived for Pf and Pd are formally equivalent to those obtained by Finkelstein and Rosenberg (1979. Membrane Transport Processes. Vol. 3. C.F. Stevens and R.W. Tsien, editors, Raven Press, New York. 73-88.) A main difference with the vacancy mechanism is that here the permeability coefficients are independent of the water activities.
Full Text
The Full Text of this article is available as a PDF (866.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cooper K. E., Gates P. Y., Eisenberg R. S. Diffusion theory and discrete rate constants in ion permeation. J Membr Biol. 1988 Dec;106(2):95–105. doi: 10.1007/BF01871391. [DOI] [PubMed] [Google Scholar]
- Fischbarg J., Kuang K. Y., Vera J. C., Arant S., Silverstein S. C., Loike J., Rosen O. M. Glucose transporters serve as water channels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3244–3247. doi: 10.1073/pnas.87.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galey W. R., Brahm J. The failure of hydrodynamic analysis to define pore size in cell membranes. Biochim Biophys Acta. 1985 Sep 10;818(3):425–428. doi: 10.1016/0005-2736(85)90019-7. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohler H. H., Heckmann K. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. I. Pores containing no more than one vacancy. J Theor Biol. 1979 Aug 7;79(3):381–401. doi: 10.1016/0022-5193(79)90354-0. [DOI] [PubMed] [Google Scholar]
- Kohler H. H., Heckmann K. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. II. Asymptotic behavior at high degrees of saturation. J Theor Biol. 1980 Aug 21;85(4):575–595. doi: 10.1016/0022-5193(80)90259-3. [DOI] [PubMed] [Google Scholar]
- Levitt D. G. A new theory of transport for cell membrane pores. I. General theory and application to red cell. Biochim Biophys Acta. 1974 Nov 27;373(1):115–131. doi: 10.1016/0005-2736(74)90111-4. [DOI] [PubMed] [Google Scholar]
- Macey R. I. Transport of water and urea in red blood cells. Am J Physiol. 1984 Mar;246(3 Pt 1):C195–C203. doi: 10.1152/ajpcell.1984.246.3.C195. [DOI] [PubMed] [Google Scholar]
- Parisi M., Bourguet J. Water channels in animal cells: a widespread structure? Biol Cell. 1985;55(3):155–157. [PubMed] [Google Scholar]
- Solomon A. K. Characterization of biological membranes by equivalent pores. J Gen Physiol. 1968 May;51(5 Suppl):335S+–335S+. [PubMed] [Google Scholar]
- Solomon A. K., Chasan B., Dix J. A., Lukacovic M. F., Toon M. R., Verkman A. S. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann N Y Acad Sci. 1983;414:97–124. doi: 10.1111/j.1749-6632.1983.tb31678.x. [DOI] [PubMed] [Google Scholar]
- Zwanzig R. Diffusion in a rough potential. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2029–2030. doi: 10.1073/pnas.85.7.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]