Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1994 May 1;103(5):755–785. doi: 10.1085/jgp.103.5.755

Na(+)-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils

PMCID: PMC2219217  PMID: 8035162

Abstract

Voltage-activated H(+)-selective currents were studied in cultured adult rat alveolar epithelial cells and in human neutrophils using the whole-cell configuration of the patch-clamp technique. The H+ conductance, gH, although highly selective for protons, was modulated by monovalent cations. In Na+ and to a smaller extent in Li+ solutions, H+ currents were depressed substantially and the voltage dependence of activation of the gH shifted to more positive potentials, when compared with the "inert" cation tetramethylammonium (TMA+). The reversal potential of the gH, Vrev, was more positive in Na+ solutions than in inert ion solutions. Amiloride at 100 microM inhibited H+ currents in the presence of all cations studied except Li+ and Na+, in which it increased H+ currents and shifted their voltage-dependence and Vrev to more negative potentials. The more specific Na(+)-H+ exchange inhibitor dimethylamiloride (DMA) at 10 microM similarly reversed most of the suppression of the gH by Na+ and Li+. Neither 500 microM amiloride nor 200 microM DMA added internally via the pipette solution were effective. Distinct inhibition of the gH was observed with 1% [Na+]o, indicating a mechanism with high sensitivity. Finally, the effects of Na+ and their reversal by amiloride were large when the proton gradient was outward (pHo parallel pHi 7 parallel 5.5), smaller when the proton gradient was abolished (pH 7 parallel 7), and absent when the proton gradient was inward (pH 6 parallel 7). We propose that the effects of Na+ and Li+ are due to their transport by the Na(+)-H+ antiporter, which is present in both cell types studied. Electrically silent H+ efflux through the antiporter would increase pHi and possibly decrease local pHo, both of which modulate the gH in a similar manner: reducing the H+ currents at a given potential and shifting their voltage- dependence to more positive potentials. A simple diffusion model suggests that Na(+)-H+ antiport could deplete intracellular protonated buffer to the extent observed. Evidently the Na(+)-H+ antiporter functions in perfused cells, and its operation results in pH changes which can be detected using the gH as a physiological sensor. Thus, the properties of the gH can be exploited to study Na(+)-H+ antiport in single cells under controlled conditions.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
  2. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  3. Barish M. E., Baud C. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J Physiol. 1984 Jul;352:243–263. doi: 10.1113/jphysiol.1984.sp015289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  5. Bonanno J. A. K(+)-H+ exchange, a fundamental cell acidifier in corneal epithelium. Am J Physiol. 1991 Mar;260(3 Pt 1):C618–C625. doi: 10.1152/ajpcell.1991.260.3.C618. [DOI] [PubMed] [Google Scholar]
  6. Boron W. F. Intracellular pH regulation in epithelial cells. Annu Rev Physiol. 1986;48:377–388. doi: 10.1146/annurev.ph.48.030186.002113. [DOI] [PubMed] [Google Scholar]
  7. Brown S. E., Heming T. A., Benedict C. R., Bidani A. ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells. Am J Physiol. 1991 Dec;261(6 Pt 1):C954–C963. doi: 10.1152/ajpcell.1991.261.6.C954. [DOI] [PubMed] [Google Scholar]
  8. Byerly L., Meech R., Moody W., Jr Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jun;351:199–216. doi: 10.1113/jphysiol.1984.sp015241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byerly L., Suen Y. Characterization of proton currents in neurones of the snail, Lymnaea stagnalis. J Physiol. 1989 Jun;413:75–89. doi: 10.1113/jphysiol.1989.sp017642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cala P. M., Hoffmann K. S. Alkali metal/proton exchange. Methods Enzymol. 1989;173:330–346. doi: 10.1016/s0076-6879(89)73021-4. [DOI] [PubMed] [Google Scholar]
  11. Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies K., Solioz M. Assessment of uncoupling by amiloride analogs. Biochemistry. 1992 Sep 1;31(34):8055–8058. doi: 10.1021/bi00149a040. [DOI] [PubMed] [Google Scholar]
  13. DeCoursey T. E., Cherny V. V. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J. 1993 Oct;65(4):1590–1598. doi: 10.1016/S0006-3495(93)81198-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DeCoursey T. E. Hydrogen ion currents in rat alveolar epithelial cells. Biophys J. 1991 Nov;60(5):1243–1253. doi: 10.1016/S0006-3495(91)82158-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeCoursey T. E., Jacobs E. R., Silver M. R. Potassium currents in rat type II alveolar epithelial cells. J Physiol. 1988 Jan;395:487–505. doi: 10.1113/jphysiol.1988.sp016931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DeCoursey T. E. State-dependent inactivation of K+ currents in rat type II alveolar epithelial cells. J Gen Physiol. 1990 Apr;95(4):617–646. doi: 10.1085/jgp.95.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Demaurex N., Grinstein S., Jaconi M., Schlegel W., Lew D. P., Krause K. H. Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J Physiol. 1993 Jul;466:329–344. [PMC free article] [PubMed] [Google Scholar]
  18. Gallin E. K. Ion channels in leukocytes. Physiol Rev. 1991 Jul;71(3):775–811. doi: 10.1152/physrev.1991.71.3.775. [DOI] [PubMed] [Google Scholar]
  19. Gerboth G. D., Effros R. M., Roman R. J., Jacobs E. R. pH-induced calcium transients in type II alveolar epithelial cells. Am J Physiol. 1993 May;264(5 Pt 1):L448–L457. doi: 10.1152/ajplung.1993.264.5.L448. [DOI] [PubMed] [Google Scholar]
  20. Gilbertson T. A., Avenet P., Kinnamon S. C., Roper S. D. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J Gen Physiol. 1992 Nov;100(5):803–824. doi: 10.1085/jgp.100.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gutknecht J., Tosteson D. C. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science. 1973 Dec 21;182(4118):1258–1261. doi: 10.1126/science.182.4118.1258. [DOI] [PubMed] [Google Scholar]
  22. Harvey R. D., Ten Eick R. E. On the role of sodium ions in the regulation of the inward-rectifying potassium conductance in cat ventricular myocytes. J Gen Physiol. 1989 Aug;94(2):329–348. doi: 10.1085/jgp.94.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hille B. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol. 1977 Apr;69(4):475–496. doi: 10.1085/jgp.69.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacobs E. R., DeCoursey T. E. Mechanisms of potassium channel block in rat alveolar epithelial cells. J Pharmacol Exp Ther. 1990 Nov;255(2):459–472. [PubMed] [Google Scholar]
  25. Jones G. S., Miles P. R., Lantz R. C., Hinton D. E., Castranova V. Ionic content and regulation of cellular volume in rat alveolar type II cells. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):258–266. doi: 10.1152/jappl.1982.53.1.258. [DOI] [PubMed] [Google Scholar]
  26. Kapus A., Romanek R., Qu A. Y., Rotstein O. D., Grinstein S. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol. 1993 Oct;102(4):729–760. doi: 10.1085/jgp.102.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kinsella J. L., Aronson P. S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1981 Oct;241(4):F374–F379. doi: 10.1152/ajprenal.1981.241.4.F374. [DOI] [PubMed] [Google Scholar]
  28. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  29. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  30. Krause K. H., Welsh M. J. Voltage-dependent and Ca2(+)-activated ion channels in human neutrophils. J Clin Invest. 1990 Feb;85(2):491–498. doi: 10.1172/JCI114464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lubman R. L., Crandall E. D. Na(+)-HCO3- symport modulates intracellular pH in alveolar epithelial cells. Am J Physiol. 1991 Jun;260(6 Pt 1):L555–L561. doi: 10.1152/ajplung.1991.260.6.L555. [DOI] [PubMed] [Google Scholar]
  32. Lubman R. L., Crandall E. D. Polarized distribution of Na(+)-H+ antiport activity in rat alveolar epithelial cells. Am J Physiol. 1994 Feb;266(2 Pt 1):L138–L147. doi: 10.1152/ajplung.1994.266.2.L138. [DOI] [PubMed] [Google Scholar]
  33. Lubman R. L., Danto S. I., Crandall E. D. Evidence for active H+ secretion by rat alveolar epithelial cells. Am J Physiol. 1989 Dec;257(6 Pt 1):L438–L445. doi: 10.1152/ajplung.1989.257.6.L438. [DOI] [PubMed] [Google Scholar]
  34. Matalon S., Kirk K. L., Bubien J. K., Oh Y., Hu P., Yue G., Shoemaker R., Cragoe E. J., Jr, Benos D. J. Immunocytochemical and functional characterization of Na+ conductance in adult alveolar pneumocytes. Am J Physiol. 1992 May;262(5 Pt 1):C1228–C1238. doi: 10.1152/ajpcell.1992.262.5.C1228. [DOI] [PubMed] [Google Scholar]
  35. Mathias R. T., Cohen I. S., Oliva C. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophys J. 1990 Sep;58(3):759–770. doi: 10.1016/S0006-3495(90)82418-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McGuigan J. A., Lüthi D., Buri A. Calcium buffer solutions and how to make them: a do it yourself guide. Can J Physiol Pharmacol. 1991 Nov;69(11):1733–1749. doi: 10.1139/y91-257. [DOI] [PubMed] [Google Scholar]
  37. Meech R. W., Thomas R. C. Voltage-dependent intracellular pH in Helix aspersa neurones. J Physiol. 1987 Sep;390:433–452. doi: 10.1113/jphysiol.1987.sp016710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nord E. P., Brown S. E., Crandall E. D. Characterization of Na+-H+ antiport in type II alveolar epithelial cells. Am J Physiol. 1987 May;252(5 Pt 1):C490–C498. doi: 10.1152/ajpcell.1987.252.5.C490. [DOI] [PubMed] [Google Scholar]
  39. Nord E. P., Brown S. E., Crandall E. D. Cl-/HCO3- exchange modulates intracellular pH in rat type II alveolar epithelial cells. J Biol Chem. 1988 Apr 25;263(12):5599–5606. [PubMed] [Google Scholar]
  40. Orlowski J. Heterologous expression and functional properties of amiloride high affinity (NHE-1) and low affinity (NHE-3) isoforms of the rat Na/H exchanger. J Biol Chem. 1993 Aug 5;268(22):16369–16377. [PubMed] [Google Scholar]
  41. Orser B. A., Bertlik M., Fedorko L., O'Brodovich H. Cation selective channel in fetal alveolar type II epithelium. Biochim Biophys Acta. 1991 Aug 13;1094(1):19–26. doi: 10.1016/0167-4889(91)90021-o. [DOI] [PubMed] [Google Scholar]
  42. Otsu K., Kinsella J. L., Koh E., Froehlich J. P. Proton dependence of the partial reactions of the sodium-proton exchanger in renal brush border membranes. J Biol Chem. 1992 Apr 25;267(12):8089–8096. [PubMed] [Google Scholar]
  43. Palmer L. G., Frindt G. Epithelial sodium channels: characterization by using the patch-clamp technique. Fed Proc. 1986 Nov;45(12):2708–2712. [PubMed] [Google Scholar]
  44. Pusch M., Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204–211. doi: 10.1007/BF00582316. [DOI] [PubMed] [Google Scholar]
  45. Restrepo D., Cho D. S., Kron M. J. Essential activation of Na(+)-H+ exchange by [H+]i in HL-60 cells. Am J Physiol. 1990 Sep;259(3 Pt 1):C490–C502. doi: 10.1152/ajpcell.1990.259.3.C490. [DOI] [PubMed] [Google Scholar]
  46. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  47. Russo R. M., Lubman R. L., Crandall E. D. Evidence for amiloride-sensitive sodium channels in alveolar epithelial cells. Am J Physiol. 1992 Apr;262(4 Pt 1):L405–L411. doi: 10.1152/ajplung.1992.262.4.L405. [DOI] [PubMed] [Google Scholar]
  48. Sano K., Cott G. R., Voelker D. R., Mason R. J. The Na+/H+ antiporter in rat alveolar type II cells and its role in stimulated surfactant secretion. Biochim Biophys Acta. 1988 Apr 22;939(3):449–458. doi: 10.1016/0005-2736(88)90091-0. [DOI] [PubMed] [Google Scholar]
  49. Schmeichel C. J., Thomas L. L. Methylxanthine bronchodilators potentiate multiple human neutrophil functions. J Immunol. 1987 Mar 15;138(6):1896–1903. [PubMed] [Google Scholar]
  50. Shaw A. M., Steele L. W., Butcher P. A., Ward M. R., Olver R. E. Sodium-proton exchange across the apical membrane of the alveolar type II cell of the fetal sheep. Biochim Biophys Acta. 1990 Sep 21;1028(1):9–13. doi: 10.1016/0005-2736(90)90258-p. [DOI] [PubMed] [Google Scholar]
  51. Stoddard J. S., Steinbach J. H., Simchowitz L. Whole cell Cl- currents in human neutrophils induced by cell swelling. Am J Physiol. 1993 Jul;265(1 Pt 1):C156–C165. doi: 10.1152/ajpcell.1993.265.1.C156. [DOI] [PubMed] [Google Scholar]
  52. Thomas R. C. Changes in the surface pH of voltage-clamped snail neurones apparently caused by H+ fluxes through a channel. J Physiol. 1988 Apr;398:313–327. doi: 10.1113/jphysiol.1988.sp017044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Thomas R. C., Meech R. W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature. 1982 Oct 28;299(5886):826–828. doi: 10.1038/299826a0. [DOI] [PubMed] [Google Scholar]
  54. Thomas R. C. Proton channels in snail neurones. Does calcium entry mimic the effects of proton influx? Ann N Y Acad Sci. 1989;574:287–293. doi: 10.1111/j.1749-6632.1989.tb25165.x. [DOI] [PubMed] [Google Scholar]
  55. Tse M., Levine S., Yun C., Brant S., Counillon L. T., Pouyssegur J., Donowitz M. Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family. J Membr Biol. 1993 Aug;135(2):93–108. doi: 10.1007/BF00231435. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES