Abstract
Calcium (Ca) dynamics are incorporated into a mathematical model of the principal cell in the cortical collecting tubule developed earlier in Strieter et al. (1992a. Am. J Physiol. 263:F1063-1075). The Ca components are modeled after the Othmer-Tang model for IP(3)-sensitive calcium channels (1993, in Experimental and Theoretical Advances in Biological Pattern Formation, 295-319). There are IP(3)-sensitive Ca channels and ATP-driven pumps on the membrane of the endoplasmic reticulum. Calcium enters the cell passively down its electrochemical gradient. A Ca pump and Na/Ca exchange in the basolateral membrane are responsible for the extrusion of cytoplasmic calcium. Na/Ca exchange can also operate in reverse mode to transport Ca into the cell. Regulatory effects of cytoplasmic Ca on the apical Na channels are modeled after experimental data that indicate apical Na permeability varies inversely with cytoplasmic Ca concentration. Numerical results on changes in intracellular Ca caused by decreasing NaCl in the bath and the lumen are similar to those from experiments in Bourdeau and Lau (1990. Am. J Physiol. 258:F1497-1503). This match of simulation and experiment requires the synergistic action of the Na/Ca exchanger and the Ca regulated apical Na permeability. In a homogeneous medium, cytoplasmic Ca becomes oscillatory when extracellular Na is severely decreased, as observed in experiments of cultured principal cells (Koster, H., C. van Os and R. Bindels. 1993. Kidney Int.43:828-836). This essentially pathological situation arises because the hyperpolarization of membrane potential caused by Na-free medium increases Ca influx into the cell, while the Na/Ca exchanger is inactivated by the low extracellular Na and can no longer move Ca out of the cell effectively. The raising of the total amount of intracellular Ca induces oscillatory Ca movement between the cytoplasm and the endoplasmic reticulum. Ca homeostasis is investigated under the condition of severe extracellular Ca variations. As extracellular Ca is decreased, Ca regulation is greatly impaired if Ca does not regulate apical ionic transport. The simulations indicate that the Na/Ca exchanger alone has only limited regulatory capacity. The Ca regulated apical sodium or potassium permeability are essential for regulation of cytoplasmic Ca in the principal cell of the cortical collecting tubule.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie R. F., al-Baldawi N. F., Jackson J. Ca2+ binding by Myxicola neurofilament proteins. Cell Calcium. 1990 May;11(5):361–370. doi: 10.1016/0143-4160(90)90039-w. [DOI] [PubMed] [Google Scholar]
- Atri A., Amundson J., Clapham D., Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727–1739. doi: 10.1016/S0006-3495(93)81191-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezprozvanny I., Ehrlich B. E. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol. 1994 Nov;104(5):821–856. doi: 10.1085/jgp.104.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bindels R. J., Ramakers P. L., Dempster J. A., Hartog A., van Os C. H. Role of Na+/Ca2+ exchange in transcellular Ca2+ transport across primary cultures of rabbit kidney collecting system. Pflugers Arch. 1992 Apr;420(5-6):566–572. doi: 10.1007/BF00374634. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Minami J., Verma A., Penniston J. T., Kumar R. Monoclonal antibodies to human erythrocyte membrane Ca++-Mg++ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest. 1987 Nov;80(5):1225–1231. doi: 10.1172/JCI113196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourdeau J. E., Hellstrom-Stein R. J. Voltage-dependent calcium movement across the cortical collecting duct. Am J Physiol. 1982 Mar;242(3):F285–F292. doi: 10.1152/ajprenal.1982.242.3.F285. [DOI] [PubMed] [Google Scholar]
- Bourdeau J. E., Lau K. Basolateral cell membrane Ca-Na exchange in single rabbit connecting tubules. Am J Physiol. 1990 Jun;258(6 Pt 2):F1497–F1503. doi: 10.1152/ajprenal.1990.258.6.F1497. [DOI] [PubMed] [Google Scholar]
- Bourdeau J. E., Taylor A. N., Iacopino A. M. Immunocytochemical localization of sodium-calcium exchanger in canine nephron. J Am Soc Nephrol. 1993 Jul;4(1):105–110. doi: 10.1681/ASN.V41105. [DOI] [PubMed] [Google Scholar]
- Campbell D. L., Giles W. R., Robinson K., Shibata E. F. Studies of the sodium-calcium exchanger in bull-frog atrial myocytes. J Physiol. 1988 Sep;403:317–340. doi: 10.1113/jphysiol.1988.sp017251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champigneulle A., Siga E., Vassent G., Imbert-Teboul M. V2-like vasopressin receptor mobilizes intracellular Ca2+ in rat medullary collecting tubules. Am J Physiol. 1993 Jul;265(1 Pt 2):F35–F45. doi: 10.1152/ajprenal.1993.265.1.F35. [DOI] [PubMed] [Google Scholar]
- Chase H. S., Jr, Al-Awqati Q. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus. J Gen Physiol. 1983 May;81(5):643–665. doi: 10.1085/jgp.81.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doucet A., Katz A. I. High-affinity Ca-Mg-ATPase along the rabbit nephron. Am J Physiol. 1982 Apr;242(4):F346–F352. doi: 10.1152/ajprenal.1982.242.4.F346. [DOI] [PubMed] [Google Scholar]
- Frindt G., Silver R. B., Windhager E. E., Palmer L. G. Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry. Am J Physiol. 1993 Mar;264(3 Pt 2):F565–F574. doi: 10.1152/ajprenal.1993.264.3.F565. [DOI] [PubMed] [Google Scholar]
- Frindt G., Windhager E. E. Ca2(+)-dependent inhibition of sodium transport in rabbit cortical collecting tubules. Am J Physiol. 1990 Mar;258(3 Pt 2):F568–F582. doi: 10.1152/ajprenal.1990.258.3.F568. [DOI] [PubMed] [Google Scholar]
- Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gmaj P., Murer H. Calcium transport mechanisms in epithelial cell membranes. Miner Electrolyte Metab. 1988;14(1):22–30. [PubMed] [Google Scholar]
- Haas M. The Na-K-Cl cotransporters. Am J Physiol. 1994 Oct;267(4 Pt 1):C869–C885. doi: 10.1152/ajpcell.1994.267.4.C869. [DOI] [PubMed] [Google Scholar]
- Haynes D. H., Mandveno A. Computer modeling of Ca2+ pump function of Ca2+-Mg2+-ATPase of sarcoplasmic reticulum. Physiol Rev. 1987 Jan;67(1):244–284. doi: 10.1152/physrev.1987.67.1.244. [DOI] [PubMed] [Google Scholar]
- Hilgemann D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 1994 Mar 11;263(5152):1429–1432. doi: 10.1126/science.8128223. [DOI] [PubMed] [Google Scholar]
- Hirsch J., Leipziger J., Fröbe U., Schlatter E. Regulation and possible physiological role of the Ca(2+)-dependent K+ channel of cortical collecting ducts of the rat. Pflugers Arch. 1993 Feb;422(5):492–498. doi: 10.1007/BF00375077. [DOI] [PubMed] [Google Scholar]
- Hoffman P. G., Tosteson D. C. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J Gen Physiol. 1971 Oct;58(4):438–466. doi: 10.1085/jgp.58.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hébert R. L., Jacobson H. R., Breyer M. D. PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. Am J Physiol. 1990 Aug;259(2 Pt 2):F318–F325. doi: 10.1152/ajprenal.1990.259.2.F318. [DOI] [PubMed] [Google Scholar]
- Keizer J., De Young G. Effect of voltage-gated plasma membrane Ca2+ fluxes on IP3-linked Ca2+ oscillations. Cell Calcium. 1993 May;14(5):397–410. doi: 10.1016/0143-4160(93)90044-7. [DOI] [PubMed] [Google Scholar]
- Kendall J. M., Badminton M. N., Dormer R. L., Campbell A. K. Changes in free calcium in the endoplasmic reticulum of living cells detected using targeted aequorin. Anal Biochem. 1994 Aug 15;221(1):173–181. doi: 10.1006/abio.1994.1394. [DOI] [PubMed] [Google Scholar]
- Koster H. P., van Os C. H., Bindels R. J. Ca2+ oscillations in the rabbit renal cortical collecting system induced by Na+ free solutions. Kidney Int. 1993 Apr;43(4):828–836. doi: 10.1038/ki.1993.117. [DOI] [PubMed] [Google Scholar]
- Li Y. X., Rinzel J., Keizer J., Stojilković S. S. Calcium oscillations in pituitary gonadotrophs: comparison of experiment and theory. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):58–62. doi: 10.1073/pnas.91.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
- Magaldi A. J., van Baak A. A., Rocha A. S. Calcium transport across rat inner medullary collecting duct perfused in vitro. Am J Physiol. 1989 Nov;257(5 Pt 2):F738–F745. doi: 10.1152/ajprenal.1989.257.5.F738. [DOI] [PubMed] [Google Scholar]
- Milner R. E., Famulski K. S., Michalak M. Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem. 1992 May 13;112(1):1–13. doi: 10.1007/BF00229637. [DOI] [PubMed] [Google Scholar]
- Miyamoto H., Ikehara T., Yamaguchi H., Hosokawa K., Yonezu T., Masuya T. Kinetic mechanism of Na+, K+, Cl--cotransport as studied by Rb+ influx into HeLa cells: effects of extracellular monovalent ions. J Membr Biol. 1986;92(2):135–150. doi: 10.1007/BF01870703. [DOI] [PubMed] [Google Scholar]
- Naruse M., Uchida S., Ogata E., Kurokawa K. Endothelin 1 increases cell calcium in mouse collecting tubule cells. Am J Physiol. 1991 Oct;261(4 Pt 2):F720–F725. doi: 10.1152/ajprenal.1991.261.4.F720. [DOI] [PubMed] [Google Scholar]
- Palmer L. G., Frindt G. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol. 1987 Aug;253(2 Pt 2):F333–F339. doi: 10.1152/ajprenal.1987.253.2.F333. [DOI] [PubMed] [Google Scholar]
- Parys J. B., De Smedt H., Vandenberghe P., Borghgraef R. Characterization of ATP-driven calcium uptake in renal basal-lateral and renal endoplasmic reticulum membrane vesicles. Cell Calcium. 1985 Oct;6(5):413–429. doi: 10.1016/0143-4160(85)90018-1. [DOI] [PubMed] [Google Scholar]
- Rick R. Ion concentration changes in renal cells during regulatory volume decrease. Am J Physiol. 1993 Jul;265(1 Pt 2):F77–F86. doi: 10.1152/ajprenal.1993.265.1.F77. [DOI] [PubMed] [Google Scholar]
- Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlatter E., Bleich M., Hirsch J., Markstahler U., Fröbe U., Greger R. Cation specificity and pharmacological properties of the Ca(2+)-dependent K+ channel of rat cortical collecting ducts. Pflugers Arch. 1993 Feb;422(5):481–491. doi: 10.1007/BF00375076. [DOI] [PubMed] [Google Scholar]
- Silver R. B., Frindt G., Windhager E. E., Palmer L. G. Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump. Am J Physiol. 1993 Mar;264(3 Pt 2):F557–F564. doi: 10.1152/ajprenal.1993.264.3.F557. [DOI] [PubMed] [Google Scholar]
- Strieter J., Stephenson J. L., Giebisch G., Weinstein A. M. A mathematical model of the rabbit cortical collecting tubule. Am J Physiol. 1992 Dec;263(6 Pt 2):F1063–F1075. doi: 10.1152/ajprenal.1992.263.6.F1063. [DOI] [PubMed] [Google Scholar]
- Strieter J., Stephenson J. L., Palmer L. G., Weinstein A. M. Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium. J Gen Physiol. 1990 Aug;96(2):319–344. doi: 10.1085/jgp.96.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strieter J., Weinstein A. M., Giebisch G., Stephenson J. L. Regulation of K transport in a mathematical model of the cortical collecting tubule. Am J Physiol. 1992 Dec;263(6 Pt 2):F1076–F1086. doi: 10.1152/ajprenal.1992.263.6.F1076. [DOI] [PubMed] [Google Scholar]
- Tang Y., Othmer H. G. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J. 1994 Dec;67(6):2223–2235. doi: 10.1016/S0006-3495(94)80707-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang Y., Othmer H. G. Frequency encoding in excitable systems with applications to calcium oscillations. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7869–7873. doi: 10.1073/pnas.92.17.7869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang Y., Stephenson J. L., Othmer H. G. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J. 1996 Jan;70(1):246–263. doi: 10.1016/S0006-3495(96)79567-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994 Jul;67(1):447–456. doi: 10.1016/S0006-3495(94)80500-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. H., Geibel J., Giebisch G. Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase. J Gen Physiol. 1993 May;101(5):673–694. doi: 10.1085/jgp.101.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watras J., Bezprozvanny I., Ehrlich B. E. Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states. J Neurosci. 1991 Oct;11(10):3239–3245. doi: 10.1523/JNEUROSCI.11-10-03239.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westphale H. J., Wojnowski L., Schwab A., Oberleithner H. Spontaneous membrane potential oscillations in Madin-Darby canine kidney cells transformed by alkaline stress. Pflugers Arch. 1992 Jun;421(2-3):218–223. doi: 10.1007/BF00374830. [DOI] [PubMed] [Google Scholar]
- Windhager E. E., Frindt G., Milovanovic S. The role of Na-Ca exchange in renal epithelia. An overview. Ann N Y Acad Sci. 1991;639:577–591. doi: 10.1111/j.1749-6632.1991.tb17356.x. [DOI] [PubMed] [Google Scholar]
- Wojnowski L., Hoyland J., Mason W. T., Schwab A., Westphale H. J., Oberleithner H. Cell transformation induces a cytoplasmic Ca2+ oscillator in Madin-Darby canine kidney cells. Pflugers Arch. 1994 Jan;426(1-2):89–94. doi: 10.1007/BF00374675. [DOI] [PubMed] [Google Scholar]
- Wojnowski L., Schwab A., Hoyland J., Mason W. T., Silbernagl S., Oberleithner H. Cytoplasmic Ca2+ determines the rate of Ca2+ entry into Mardin-Darby canine kidney-focus (MDCK-F) cells. Pflugers Arch. 1994 Jan;426(1-2):95–100. doi: 10.1007/BF00374676. [DOI] [PubMed] [Google Scholar]
- Wünsch S., Gekle M., Kersting U., Schuricht B., Oberleithner H. Phenotypically and karyotypically distinct Madin-Darby canine kidney cell clones respond differently to alkaline stress. J Cell Physiol. 1995 Jul;164(1):164–171. doi: 10.1002/jcp.1041640121. [DOI] [PubMed] [Google Scholar]
- Yamamoto-Hino M., Sugiyama T., Hikichi K., Mattei M. G., Hasegawa K., Sekine S., Sakurada K., Miyawaki A., Furuichi T., Hasegawa M. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors Channels. 1994;2(1):9–22. [PubMed] [Google Scholar]
- Yau K. W. Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):9–32. [PubMed] [Google Scholar]
- Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- al-Baldawi N. F., Abercrombie R. F. Cytoplasmic calcium buffer capacity determined with Nitr-5 and DM-nitrophen. Cell Calcium. 1995 Jun;17(6):409–421. doi: 10.1016/0143-4160(95)90087-x. [DOI] [PubMed] [Google Scholar]
- al-Baldawi N. F., Abercrombie R. F. Properties of calcium binding by Myxicola axoplasmic protein. Cell Calcium. 1990 Aug;11(7):459–467. doi: 10.1016/0143-4160(90)90078-9. [DOI] [PubMed] [Google Scholar]