Abstract
A theory of cognitive mapping is developed that depends only on accepted properties of hippocampal function, namely, long-term potentiation, the place cell phenomenon, and the associative or recurrent connections made among CA3 pyramidal cells. It is proposed that the distance between the firing fields of connected pairs of CA3 place cells is encoded as synaptic resistance (reciprocal synaptic strength). The encoding occurs because pairs of cells with coincident or overlapping fields will tend to fire together in time, thereby causing a decrease in synaptic resistance via long-term potentiation; in contrast, cells with widely separated fields will tend never to fire together, causing no change or perhaps (via long-term depression) an increase in synaptic resistance. A network whose connection pattern mimics that of CA3 and whose connection weights are proportional to synaptic resistance can be formally treated as a weighted, directed graph. In such a graph, a "node" is assigned to each CA3 cell and two nodes are connected by a "directed edge" if and only if the two corresponding cells are connected by a synapse. Weighted, directed graphs can be searched for an optimal path between any pair of nodes with standard algorithms. Here, we are interested in finding the path along which the sum of the synaptic resistances from one cell to another is minimal. Since each cell is a place cell, such a path also corresponds to a path in two-dimensional space. Our basic finding is that minimizing the sum of the synaptic resistances along a path in neural space yields the shortest (optimal) path in unobstructed two-dimensional space, so long as the connectivity of the network is great enough. In addition to being able to find geodesics in unobstructed space, the same network enables solutions to the "detour" and "shortcut" problems, in which it is necessary to find an optimal path around a newly introduced barrier and to take a shorter path through a hole opened up in a preexisting barrier, respectively. We argue that the ability to solve such problems qualifies the proposed hippocampal object as a cognitive map. Graph theory thus provides a sort of existence proof demonstrating that the hippocampus contains the necessary information to function as a map, in the sense postulated by others (O'Keefe, J., and L. Nadel. 1978. The Hippocampus as a Cognitive Map. Clarendon Press, Oxford, UK). It is also possible that the cognitive mapping functions of the hippocampus are carried out by parallel graph searching algorithms implemented as neural processes. This possibility has the great attraction that the hippocampus could then operate in much the same way to find paths in general problem space; it would only be necessary for pyramidal cells to exhibit a strong nonpositional firing correlate.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amaral D. G., Ishizuka N., Claiborne B. Neurons, numbers and the hippocampal network. Prog Brain Res. 1990;83:1–11. doi: 10.1016/s0079-6123(08)61237-6. [DOI] [PubMed] [Google Scholar]
- Bernard C., Wheal H. V. Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus. 1994 Oct;4(5):497–529. doi: 10.1002/hipo.450040502. [DOI] [PubMed] [Google Scholar]
- Bolshakov V. Y., Siegelbaum S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science. 1995 Sep 22;269(5231):1730–1734. doi: 10.1126/science.7569903. [DOI] [PubMed] [Google Scholar]
- Bostock E., Muller R. U., Kubie J. L. Experience-dependent modifications of hippocampal place cell firing. Hippocampus. 1991 Apr;1(2):193–205. doi: 10.1002/hipo.450010207. [DOI] [PubMed] [Google Scholar]
- Brandon J. G., Coss R. G. Rapid dendritic spine stem shortening during one-trial learning: the honeybee's first orientation flight. Brain Res. 1982 Dec 2;252(1):51–61. doi: 10.1016/0006-8993(82)90977-5. [DOI] [PubMed] [Google Scholar]
- Buzsàki G. Polysynaptic long-term potentiation: a physiological role of the perforant path--CA3/CA1 pyramidal cell synapse. Brain Res. 1988 Jul 5;455(1):192–195. doi: 10.1016/0006-8993(88)90133-3. [DOI] [PubMed] [Google Scholar]
- Buzsáki G., Horváth Z., Urioste R., Hetke J., Wise K. High-frequency network oscillation in the hippocampus. Science. 1992 May 15;256(5059):1025–1027. doi: 10.1126/science.1589772. [DOI] [PubMed] [Google Scholar]
- Buzsáki G. Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience. 1989;31(3):551–570. doi: 10.1016/0306-4522(89)90423-5. [DOI] [PubMed] [Google Scholar]
- Christian E. P., Dudek F. E. Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. J Neurophysiol. 1988 Jan;59(1):110–123. doi: 10.1152/jn.1988.59.1.110. [DOI] [PubMed] [Google Scholar]
- Foster T. C., Castro C. A., McNaughton B. L. Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science. 1989 Jun 30;244(4912):1580–1582. doi: 10.1126/science.2740902. [DOI] [PubMed] [Google Scholar]
- Hasselmo M. E., Bower J. M. Acetylcholine and memory. Trends Neurosci. 1993 Jun;16(6):218–222. doi: 10.1016/0166-2236(93)90159-j. [DOI] [PubMed] [Google Scholar]
- Hasselmo M. E., Schnell E. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci. 1994 Jun;14(6):3898–3914. doi: 10.1523/JNEUROSCI.14-06-03898.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hetherington P. A., Shapiro M. L. A simple network model simulates hippocampal place fields: II. Computing goal-directed trajectories and memory fields. Behav Neurosci. 1993 Jun;107(3):434–443. doi: 10.1037//0735-7044.107.3.434. [DOI] [PubMed] [Google Scholar]
- Hill A. J. First occurrence of hippocampal spatial firing in a new environment. Exp Neurol. 1978 Nov;62(2):282–297. doi: 10.1016/0014-4886(78)90058-4. [DOI] [PubMed] [Google Scholar]
- Ishizuka N., Weber J., Amaral D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol. 1990 May 22;295(4):580–623. doi: 10.1002/cne.902950407. [DOI] [PubMed] [Google Scholar]
- Jaffe D., Johnston D. Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol. 1990 Sep;64(3):948–960. doi: 10.1152/jn.1990.64.3.948. [DOI] [PubMed] [Google Scholar]
- Jung M. W., McNaughton B. L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus. 1993 Apr;3(2):165–182. doi: 10.1002/hipo.450030209. [DOI] [PubMed] [Google Scholar]
- Jung M. W., Wiener S. I., McNaughton B. L. Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci. 1994 Dec;14(12):7347–7356. doi: 10.1523/JNEUROSCI.14-12-07347.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNaughton B. L., Barnes C. A., O'Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 1983;52(1):41–49. doi: 10.1007/BF00237147. [DOI] [PubMed] [Google Scholar]
- Miles R., Traub R. D., Wong R. K. Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. J Neurophysiol. 1988 Oct;60(4):1481–1496. doi: 10.1152/jn.1988.60.4.1481. [DOI] [PubMed] [Google Scholar]
- Miles R., Wong R. K. Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol. 1986 Apr;373:397–418. doi: 10.1113/jphysiol.1986.sp016055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles R., Wong R. K. Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature. 1987 Oct 22;329(6141):724–726. doi: 10.1038/329724a0. [DOI] [PubMed] [Google Scholar]
- Miles R., Wong R. K. Single neurones can initiate synchronized population discharge in the hippocampus. Nature. 1983 Nov 24;306(5941):371–373. doi: 10.1038/306371a0. [DOI] [PubMed] [Google Scholar]
- Muller R. U., Bostock E., Taube J. S., Kubie J. L. On the directional firing properties of hippocampal place cells. J Neurosci. 1994 Dec;14(12):7235–7251. doi: 10.1523/JNEUROSCI.14-12-07235.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller R. U., Kubie J. L., Ranck J. B., Jr Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J Neurosci. 1987 Jul;7(7):1935–1950. doi: 10.1523/JNEUROSCI.07-07-01935.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller R. U., Kubie J. L., Saypoff R. The hippocampus as a cognitive graph (abridged version). Hippocampus. 1991 Jul;1(3):243–246. doi: 10.1002/hipo.450010306. [DOI] [PubMed] [Google Scholar]
- Muller R. U., Kubie J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987 Jul;7(7):1951–1968. doi: 10.1523/JNEUROSCI.07-07-01951.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadel L. The hippocampus and space revisited. Hippocampus. 1991 Jul;1(3):221–229. doi: 10.1002/hipo.450010302. [DOI] [PubMed] [Google Scholar]
- O'Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971 Nov;34(1):171–175. doi: 10.1016/0006-8993(71)90358-1. [DOI] [PubMed] [Google Scholar]
- O'Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976 Apr;51(1):78–109. doi: 10.1016/0014-4886(76)90055-8. [DOI] [PubMed] [Google Scholar]
- O'Keefe J., Recce M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993 Jul;3(3):317–330. doi: 10.1002/hipo.450030307. [DOI] [PubMed] [Google Scholar]
- Olton D. S., Branch M., Best P. J. Spatial correlates of hippocampal unit activity. Exp Neurol. 1978 Feb;58(3):387–409. doi: 10.1016/0014-4886(78)90096-1. [DOI] [PubMed] [Google Scholar]
- Poucet B. Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol Rev. 1993 Apr;100(2):163–182. doi: 10.1037/0033-295x.100.2.163. [DOI] [PubMed] [Google Scholar]
- Poucet B., Thinus-Blanc C., Muller R. U. Place cells in the ventral hippocampus of rats. Neuroreport. 1994 Oct 27;5(16):2045–2048. doi: 10.1097/00001756-199410270-00014. [DOI] [PubMed] [Google Scholar]
- Quirk G. J., Muller R. U., Kubie J. L., Ranck J. B., Jr The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci. 1992 May;12(5):1945–1963. doi: 10.1523/JNEUROSCI.12-05-01945.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmajuk N. A., Blair H. T. Stimulus configuration, spatial learning, and hippocampal function. Behav Brain Res. 1993 Dec 31;59(1-2):103–117. doi: 10.1016/0166-4328(93)90156-k. [DOI] [PubMed] [Google Scholar]
- Schmajuk N. A., Thieme A. D. Purposive behavior and cognitive mapping: a neural network model. Biol Cybern. 1992;67(2):165–174. doi: 10.1007/BF00201023. [DOI] [PubMed] [Google Scholar]
- Shapiro M. L., Hetherington P. A. A simple network model simulates hippocampal place fields: parametric analyses and physiological predictions. Behav Neurosci. 1993 Feb;107(1):34–50. doi: 10.1037//0735-7044.107.1.34. [DOI] [PubMed] [Google Scholar]
- Sharp P. E., Kubie J. L., Muller R. U. Firing properties of hippocampal neurons in a visually symmetrical environment: contributions of multiple sensory cues and mnemonic processes. J Neurosci. 1990 Sep;10(9):3093–3105. doi: 10.1523/JNEUROSCI.10-09-03093.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanton P. K., Sejnowski T. J. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989 May 18;339(6221):215–218. doi: 10.1038/339215a0. [DOI] [PubMed] [Google Scholar]
- Taube J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995 Jan;15(1 Pt 1):70–86. doi: 10.1523/JNEUROSCI.15-01-00070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taube J. S., Muller R. U., Ranck J. B., Jr Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990 Feb;10(2):420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. T., Best P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 1990 Feb 19;509(2):299–308. doi: 10.1016/0006-8993(90)90555-p. [DOI] [PubMed] [Google Scholar]
- Thompson L. T., Best P. J. Place cells and silent cells in the hippocampus of freely-behaving rats. J Neurosci. 1989 Jul;9(7):2382–2390. doi: 10.1523/JNEUROSCI.09-07-02382.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson A. M., Radpour S. Excitatory Connections Between CA1 Pyramidal Cells Revealed by Spike Triggered Averaging in Slices of Rat Hippocampus are Partially NMDA Receptor Mediated. Eur J Neurosci. 1991;3(6):587–601. doi: 10.1111/j.1460-9568.1991.tb00845.x. [DOI] [PubMed] [Google Scholar]
- Treves A., Rolls E. T. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992 Apr;2(2):189–199. doi: 10.1002/hipo.450020209. [DOI] [PubMed] [Google Scholar]
- Vanderwolf C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969 Apr;26(4):407–418. doi: 10.1016/0013-4694(69)90092-3. [DOI] [PubMed] [Google Scholar]
- Whishaw I. Q. Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol Behav. 1985 Jul;35(1):139–143. doi: 10.1016/0031-9384(85)90186-6. [DOI] [PubMed] [Google Scholar]
- Whishaw I. Q., Vanderwolf C. H. Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol. 1973 Apr;8(4):461–484. doi: 10.1016/s0091-6773(73)80041-0. [DOI] [PubMed] [Google Scholar]
- Wilson M. A., McNaughton B. L. Dynamics of the hippocampal ensemble code for space. Science. 1993 Aug 20;261(5124):1055–1058. doi: 10.1126/science.8351520. [DOI] [PubMed] [Google Scholar]
- Woolley C. S., McEwen B. S. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci. 1994 Dec;14(12):7680–7687. doi: 10.1523/JNEUROSCI.14-12-07680.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolley C. S., McEwen B. S. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. 1993 Oct 8;336(2):293–306. doi: 10.1002/cne.903360210. [DOI] [PubMed] [Google Scholar]
- Worden R. Navigation by fragment fitting: a theory of hippocampal function. Hippocampus. 1992 Apr;2(2):165–187. doi: 10.1002/hipo.450020208. [DOI] [PubMed] [Google Scholar]
- Yeckel M. F., Berger T. W. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5832–5836. doi: 10.1073/pnas.87.15.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]