Abstract
When a growing culture of Escherichia coli was exposed to 3 X 10(-6) M Cd2+, 85 to 95% of the cells lost their ability to form colonies on agar plates. Loss of viability was accompanied by considerable single-strand breakage in the DNA, with no detectable increase in double-strand breaks. A direct correlation appeared to exist between the number of single-strand breaks and the concentrations of Cd2+ to which the cells were exposed. Exposure of DNA in vitro to a Cd2+ concentration of 3 X 10(-6) M or higher, followed by sedimentation in alkaline sucrose gradients, demonstrated no single-strand breaks. Cadmium-exposed cells recovered viability when incubated in Cd2+-free liquid medium containing 10 mM hydroxyurea. During the early period of recovery, there was a lag in the incorporation of labeled thymidine, but cellular DNA, at least in part, appeared to be repaired.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buttin G., Wright M. Enzymatic DNA degradation in E. coli: its relationship to synthetic processes at the chromosome level. Cold Spring Harb Symp Quant Biol. 1968;33:259–269. doi: 10.1101/sqb.1968.033.01.030. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. Repair replication of mammalian cell DNA: effects of compounds that inhibit DNA synthesis or dark repair. Radiat Res. 1969 Feb;37(2):334–348. [PubMed] [Google Scholar]
- Dean C. J., Feldschreiber P., Lett J. T. Repair of x-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans. Nature. 1966 Jan 1;209(5018):49–52. doi: 10.1038/209049a0. [DOI] [PubMed] [Google Scholar]
- Durban E., Grecz N., Farkas J. Direct enzymatic repair of deoxyribonucleic acid single-strand breaks in dormant spores. J Bacteriol. 1974 Apr;118(1):129–138. doi: 10.1128/jb.118.1.129-138.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill W. E., Fangman W. L. Scission of Escherichia coli deoxyribonucleic acid in alkali. Biochemistry. 1973 Apr 24;12(9):1772–1774. doi: 10.1021/bi00733a017. [DOI] [PubMed] [Google Scholar]
- Hill W. E., Fangman W. L. Single-strand breaks in deoxyribonucleic acid and viability loss during deoxyribonucleic acid synthesis inhibition in Escherichia coli. J Bacteriol. 1973 Dec;116(3):1329–1335. doi: 10.1128/jb.116.3.1329-1335.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horikawa M., Fukuhara M., Suzuki F., Nikaido O., Sugahara T. Comparative studies on induction and rejoining of DNA single-strand breaks by radiation and chemical carcinogen in mammalian cells in vitro. Exp Cell Res. 1972 Feb;70(2):349–359. doi: 10.1016/0014-4827(72)90146-2. [DOI] [PubMed] [Google Scholar]
- Kato T. Excision repair characteristics of recB - res - and uvrC - strains of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1237–1246. doi: 10.1128/jb.112.3.1237-1246.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
- Mitra R. S., Bernstein I. A. Nature of the repair process associated with the recovery of Escherichia coli after exposure to Cd2+. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1450–1455. doi: 10.1016/0006-291x(77)90604-0. [DOI] [PubMed] [Google Scholar]
- Mitra R. S., Gray R. H., Chin B., Bernstein I. A. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+. J Bacteriol. 1975 Mar;121(3):1180–1188. doi: 10.1128/jb.121.3.1180-1188.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullinix K. P., Rosenkranz H. S. Recovery from N-hydroxyurethan-induced death. J Bacteriol. 1971 Feb;105(2):565–572. doi: 10.1128/jb.105.2.565-572.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama H., Hanawalt P. Sedimentation analysis of deoxyribonucleic acid from thymine-starved Escherichia coli. J Bacteriol. 1975 Feb;121(2):537–547. doi: 10.1128/jb.121.2.537-547.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter V. R. Intracellular responses to environmental change: the quest for optimum environment. Environ Res. 1970 Mar;3(2):176–186. doi: 10.1016/0013-9351(70)90014-9. [DOI] [PubMed] [Google Scholar]
- Reiter H., Strauss B. Repair of damage induced by a monofunctional alkylating agent in a transformable, ultraviolet-sensitive strain of Bacillus subtilis. J Mol Biol. 1965 Nov;14(1):179–194. doi: 10.1016/s0022-2836(65)80239-x. [DOI] [PubMed] [Google Scholar]
- STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
- Setlow R. B. The photochemistry, photobiology, and repair of polynucleotides. Prog Nucleic Acid Res Mol Biol. 1968;8:257–295. doi: 10.1016/s0079-6603(08)60548-6. [DOI] [PubMed] [Google Scholar]
- Springgate C. F., Mildvan A. S., Abramson R., Engle J. L., Loeb L. A. Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme. Nuclear quadrupolar relaxation studies of the role of bound zinc. J Biol Chem. 1973 Sep 10;248(17):5987–5993. [PubMed] [Google Scholar]
- Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss B., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1021–1028. doi: 10.1073/pnas.57.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]