Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jan;133(1):210–216. doi: 10.1128/jb.133.1.210-216.1978

Evolution of Pseudomonas R-plasmids: consequences of Tn1 insertion and resultant partial diploidy to chromosome and Tra- R-plasmid mobilization.

R H Olsen
PMCID: PMC221996  PMID: 618837

Abstract

Tn1 transposes from pRO161, a Tra- derivative of RP1, to Pseudomonas aeruginosa sex factor FP2. The acquisition of Tn1 by FP2 results in its ability to mobilize pRO161 to other bacteria. Genetic evidence presented here suggests two sequential mechanisms. Initially, transposition of Tn1 results in trans-diploidy for the Tra+ and Tra- plasmids. This subsequently allows mobilization of the Tra- R-plasmid dependent on a host recombination mechanism. Transconjugants from this mating contain either stable cointegrate R-plasmids or aggregates resulting from dissociation of the cointegrates into a Tra+ and Tra- plasmid. These aggregates have lost at least part of Tn1 from their parent FP2:Tn1 component, but now they mobilize the tra- R-plasmid from a recombination-deficient (Rec-) genetic background as well as from Rec+ donor strains. Transconjugants from these retransfer matings are aggregates. These results suggest a contribution of transposons to R-plasmid evolution and dissemination beyond the mere acquisition of resistance to a given antibiotic.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. S., Natkin E. Transduction of resistance determinants and R factors of the transfer systems by phage Plkc. Mol Gen Genet. 1972;114(3):261–265. doi: 10.1007/BF01788895. [DOI] [PubMed] [Google Scholar]
  2. Chandler P. M., Krishnapillai V. Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa. Mutat Res. 1974 Apr;23(1):15–23. doi: 10.1016/0027-5107(74)90155-9. [DOI] [PubMed] [Google Scholar]
  3. Clowes R. C. Molecular structure of bacterial plasmids. Bacteriol Rev. 1972 Sep;36(3):361–405. doi: 10.1128/br.36.3.361-405.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen S. N. Transposable genetic elements and plasmid evolution. Nature. 1976 Oct 28;263(5580):731–738. doi: 10.1038/263731a0. [DOI] [PubMed] [Google Scholar]
  5. HOLLOWAY B. W., EGAN J. B., MONK M. Lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci. 1960 Aug;38:321–329. doi: 10.1038/icb.1960.34. [DOI] [PubMed] [Google Scholar]
  6. Heffron F., Sublett R., Hedges R. W., Jacob A., Falkow S. Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol. 1975 Apr;122(1):250–256. doi: 10.1128/jb.122.1.250-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holloway B. W. Genetics of Pseudomonas. Bacteriol Rev. 1969 Sep;33(3):419–443. doi: 10.1128/br.33.3.419-443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jobanputra R. S., Datta N. Trimethoprim R factors in enterobacteria from clinical specimens. J Med Microbiol. 1974 May;7(2):169–177. doi: 10.1099/00222615-7-2-169. [DOI] [PubMed] [Google Scholar]
  9. Olsen R. H., Hansen J. Evolution and utility of a Pseudomonas aeruginosa drug resistance factor. J Bacteriol. 1976 Mar;125(3):837–844. doi: 10.1128/jb.125.3.837-844.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olsen R. H., Shipley P. L. RP1 properties and fertility inhibition among P, N, W, and X incompatibility group plasmids. J Bacteriol. 1975 Jul;123(1):28–35. doi: 10.1128/jb.123.1.28-35.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olsen R. H., Siak J. S., Gray R. H. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol. 1974 Sep;14(3):689–699. doi: 10.1128/jvi.14.3.689-699.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olsen R. H., Thomas D. D. Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid. J Virol. 1973 Dec;12(6):1560–1567. doi: 10.1128/jvi.12.6.1560-1567.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pemberton J. M., Clark A. J. Detection and characterization of plasmids in Pseudomonas aeruginosa strain PAO. J Bacteriol. 1973 Apr;114(1):424–433. doi: 10.1128/jb.114.1.424-433.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubens C., Heffron F., Falkow S. Transposition of a plasmid deoxyribonucleic acid sequence that mediates ampicillin resistance: independence from host rec functions and orientation of insertion. J Bacteriol. 1976 Oct;128(1):425–434. doi: 10.1128/jb.128.1.425-434.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shipley P. L., Olsen R. H. Isolation of a nontransmissible antibiotic resistance plasmid by transductional shortening of R factor RP1. J Bacteriol. 1975 Jul;123(1):20–27. doi: 10.1128/jb.123.1.20-27.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith H. W., Heller E. D. The activity of different transfer factors introduced into the same plasmid-containing strain of Escherichia coli K12. J Gen Microbiol. 1973 Sep;78(1):89–99. doi: 10.1099/00221287-78-1-89. [DOI] [PubMed] [Google Scholar]
  17. van Embden J., Cohen S. N. Molecular and genetic studies of an R factor system consisting of independent transfer and drug resistance plasmids. J Bacteriol. 1973 Nov;116(2):699–709. doi: 10.1128/jb.116.2.699-709.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES