Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Feb;133(2):601–606. doi: 10.1128/jb.133.2.601-606.1978

Stimulation of Lipase Production During Bacterial Growth on Alkanes

Colette Breuil 1, D B Shindler 1,2,, J S Sijher 1, D J Kushner 1
PMCID: PMC222064  PMID: 627533

Abstract

Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization.

Full text

PDF
601

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breuil C., Gounot A. M. Recherches préliminaires sur les bactéries lipolytiques psychrophiles des sols et des eaux. Can J Microbiol. 1972 Sep;18(9):1445–1451. [PubMed] [Google Scholar]
  2. Breuil C., Kushner D. J. Lipase and esterase formation by psychrophilic and mesophilic Acinetobacter species. Can J Microbiol. 1975 Apr;21(4):423–433. doi: 10.1139/m75-061. [DOI] [PubMed] [Google Scholar]
  3. Breuil C., Kushner D. J. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter O16). Can J Microbiol. 1975 Apr;21(4):434–441. doi: 10.1139/m75-062. [DOI] [PubMed] [Google Scholar]
  4. Breuil C., Novitsky T. J., Kushner D. J. Characteristics of a facultatively psychrophilic Acinetobacter species isolated from river sediment. Can J Microbiol. 1975 Dec;21(12):2103–2108. doi: 10.1139/m75-301. [DOI] [PubMed] [Google Scholar]
  5. Demidova T. A., Garbalinskii V. A., Ruban E. L. Potreblenie mikroorganizmami n-alkanov i neftianykh aromaticheskikh uglevodorodov. Prikl Biokhim Mikrobiol. 1973 Jan-Feb;9(1):19–25. [PubMed] [Google Scholar]
  6. FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
  7. KUSHNER D. J. The effect of alcohols on the synthesis of lipase, lecithinase and other enzymes by Bacillus cereus. Biochem J. 1960 May;75:386–395. doi: 10.1042/bj0750386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleber H. P., Schöpp W., Aurich H. Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calco-aceticus. Z Allg Mikrobiol. 1973;13(5):445–447. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Makula R. A., Lockwood P. J., Finnerty W. R. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol. 1975 Jan;121(1):250–258. doi: 10.1128/jb.121.1.250-258.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J Bacteriol. 1968 Jun;95(6):2102–2107. doi: 10.1128/jb.95.6.2102-2107.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mulkins-Phillips G. J., Stewart J. E. Effect of environmental parameters on bacterial degradation of Bunker C oil, Crude oils, and hydrocarbons. Appl Microbiol. 1974 Dec;28(6):915–922. doi: 10.1128/am.28.6.915-922.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol. 1967 Jul;15(4):857–865. doi: 10.1128/am.15.4.857-865.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Starr M. P. SPIRIT BLUE AGAR: A MEDIUM FOR THE DETECTION OF LIPOLYTIC MICROORGANISMS. Science. 1941 Apr 4;93(2414):333–334. doi: 10.1126/science.93.2414.333. [DOI] [PubMed] [Google Scholar]
  15. Teh J. S., Lee K. H. Effects of n-alkanes on Cladosporium resinae. Can J Microbiol. 1974 Jul;20(7):971–976. doi: 10.1139/m74-150. [DOI] [PubMed] [Google Scholar]
  16. Walker J. D., Colwell R. R., Petrakis L. Evaluation of petroleum-degrading potential of bacteria from water and sediment. Appl Microbiol. 1975 Dec;30(6):1036–1039. doi: 10.1128/am.30.6.1036-1039.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES