Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Feb;133(2):621–625. doi: 10.1128/jb.133.2.621-625.1978

sn-Glycerol-3-phosphate dehydrogenase and its interaction with nitrate reductase in wild-type and hem mutant strains of Staphylococcus aureus.

J Lascelles
PMCID: PMC222067  PMID: 637913

Abstract

Staphylococcus aureus has membrane-associated sn-glycerol-3-phosphate dehydrogenase activity that is strongly activated by detergents. The enzyme can be measured spectrophotometrically in intact cells in assay systems containing lauryldimethylamine oxide (Ammonyx LO). The dehydrogenase activity was located exclusively in the membrane fraction of cells grown with glycerol under aerobic conditions or under anaerobic conditions with the addition of nitrate; there was no evidence of multiple forms. Development of sn-glycerol-3-phosphate dehydrogenase activity was studied with suspensions of cells grown previously under semianaerobic conditions with glucose and nitrate. The wild-type strain rapidly formed the enzyme when incubated with glycerol under aerobic conditions or under semianaerobic conditions in the presence of nitrate. Under similar conditions, suspensions of hem mutant H-14 required the addition of hemin. Induction of the enzyme was strongly repressed by glucose with both organisms. A procedure was established to obtain cells of mutant H-14 with sn-glycerol-3-phosphate dehydrogenase and nitrate reductase activities, but which could not link the systems unless supplemented with hemin. The coupled activity could also be reconstructed in vitro by the addition of hemin to the depleted membranes.

Full text

PDF
621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke K. A., Lascelles J. Nitrate reductase activity in heme-deficient mutants of Staphylococcus aureus. J Bacteriol. 1976 Apr;126(1):225–231. doi: 10.1128/jb.126.1.225-231.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke K. A., Lascelles J. Nitrate reductase system in Staphylococcus aureus wild type and mutants. J Bacteriol. 1975 Jul;123(1):308–316. doi: 10.1128/jb.123.1.308-316.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GARDNER J. F., LASCELLES J. The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. J Gen Microbiol. 1962 Sep;29:157–164. doi: 10.1099/00221287-29-1-157. [DOI] [PubMed] [Google Scholar]
  4. Kistler W. S., Lin E. C. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol. 1971 Dec;108(3):1224–1234. doi: 10.1128/jb.108.3.1224-1234.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kistler W. S., Lin E. C. Purification and properties of the flavine-stimulated anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli. J Bacteriol. 1972 Oct;112(1):539–547. doi: 10.1128/jb.112.1.539-547.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lascelles J. Anaerobic growth requirements of staphylococci and the enzymes of pyrimidine synthesis. Ann N Y Acad Sci. 1974 Jul 31;236(0):96–104. doi: 10.1111/j.1749-6632.1974.tb41484.x. [DOI] [PubMed] [Google Scholar]
  8. Lin E. C. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 1976;30:535–578. doi: 10.1146/annurev.mi.30.100176.002535. [DOI] [PubMed] [Google Scholar]
  9. Miki K., Lin E. C. Enzyme complex which couples glycerol-3-phosphate dehydrogenation to fumarate reduction in Escherichia coli. J Bacteriol. 1973 May;114(2):767–771. doi: 10.1128/jb.114.2.767-771.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Short S. A., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles. J Biol Chem. 1974 Jul 10;249(13):4275–4281. [PubMed] [Google Scholar]
  11. Short S. A., White D. C., Kaback H. R. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus. J Biol Chem. 1972 Jan 10;247(1):298–304. [PubMed] [Google Scholar]
  12. Short S. A., White D. C., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles. J Biol Chem. 1972 Dec 10;247(23):7452–7458. [PubMed] [Google Scholar]
  13. Singh A. P., Bragg P. D. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1976 Mar 12;423(3):450–461. doi: 10.1016/0005-2728(76)90200-0. [DOI] [PubMed] [Google Scholar]
  14. Singh A. P., Bragg P. D. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. Biochim Biophys Acta. 1975 Aug 11;396(2):229–241. doi: 10.1016/0005-2728(75)90037-7. [DOI] [PubMed] [Google Scholar]
  15. Weiner J. H., Heppel L. A. Purification of the membrane-bound and pyridine nucleotide-independent L-glycerol 3-phosphate dehydrogenase from Escherichia coli. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1360–1365. doi: 10.1016/0006-291x(72)90222-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES