Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Feb;133(2):680–685. doi: 10.1128/jb.133.2.680-685.1978

Utilization of arginine by Klebsiella aerogenes.

B Friedrich, B Magasanik
PMCID: PMC222075  PMID: 342501

Abstract

Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.

Full text

PDF
680

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenchley J. E., Prival M. J., Magasanik B. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem. 1973 Sep 10;248(17):6122–6128. [PubMed] [Google Scholar]
  2. Broman K., Stalon V., Wiame J. M. The duplication of arginine catabolism and the meaning of the two ornithine carbamoyltransferases in Bacillus licheniformis. Biochem Biophys Res Commun. 1975 Sep 16;66(2):821–827. doi: 10.1016/0006-291x(75)90583-5. [DOI] [PubMed] [Google Scholar]
  3. CERIOTTI G., SPANDRIO L. An improved method for the microdetermination of arginine by use of 8-hydroxyquinoline. Biochem J. 1957 Aug;66(4):603–607. doi: 10.1042/bj0660603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubois E. L., Grenson M. Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Sep 9;60(1):150–157. doi: 10.1016/0006-291x(74)90185-5. [DOI] [PubMed] [Google Scholar]
  5. Friedrich B., Friedrich C. G., Magasanik B. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes: control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J Bacteriol. 1978 Feb;133(2):686–691. doi: 10.1128/jb.133.2.686-691.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedrich B., Magasanik B. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase. J Bacteriol. 1977 Aug;131(2):446–452. doi: 10.1128/jb.131.2.446-452.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism. J Biol Chem. 1971 Aug 25;246(16):5053–5058. [PubMed] [Google Scholar]
  9. Morris D. R., Pardee A. B. Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem. 1966 Jul 10;241(13):3129–3135. [PubMed] [Google Scholar]
  10. Olomucki A., Pho D. B., Lebar R., Delcambe L., Thoai N. V. Arginine oxygenase decarboxylante. V. Purification et nature flavinique. Biochim Biophys Acta. 1968 Feb 5;151(2):353–366. doi: 10.1016/0005-2744(68)90102-2. [DOI] [PubMed] [Google Scholar]
  11. PETRACK B., SULLIVAN L., RATNER S. Behavior of purified arginine desiminase from S. faecalis. Arch Biochem Biophys. 1957 Jul;69:186–197. doi: 10.1016/0003-9861(57)90485-x. [DOI] [PubMed] [Google Scholar]
  12. Prival M. J., Brenchley J. E., Magasanik B. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem. 1973 Jun 25;248(12):4334–4344. [PubMed] [Google Scholar]
  13. Prival M. J., Magasanik B. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J Biol Chem. 1971 Oct 25;246(20):6288–6296. [PubMed] [Google Scholar]
  14. Voellmy R., Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. doi: 10.1128/jb.122.3.799-809.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whitney P. A., Magasanik B. The induction of arginase in Saccharomyces cerevisiae. J Biol Chem. 1973 Sep 10;248(17):6197–6202. [PubMed] [Google Scholar]
  16. Wilson O. H., Holden J. T. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J Biol Chem. 1969 May 25;244(10):2737–2742. [PubMed] [Google Scholar]
  17. Wilson O. H., Holden J. T. Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions. J Biol Chem. 1969 May 25;244(10):2743–2749. [PubMed] [Google Scholar]
  18. ZELLER E. A., VAN ORDEN L. S., VOGTLI W. Enzymology of mycobacteria. VII. Degradation of guanidine derivatives. J Biol Chem. 1954 Jul;209(1):429–435. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES