Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Feb;133(2):737–743. doi: 10.1128/jb.133.2.737-743.1978

Regulation of the major proline permease gene of Salmonella typhimurium.

B Ratzkin, M Grabnar, J Roth
PMCID: PMC222082  PMID: 342506

Abstract

The structural gene for the major proline permease is located in a tight cluster with genes coding for the proline degradative enzymes, proline oxidase and pyrroline-5-carboxylic acid dehydrogenase. Expression of the permease is regulated in parallel with the two degradative enzymes, and all three functions are subject to catabolite repression. Regulatory mutants (putC) have constitutively high levels of all three activities, suggesting that all are regulated by a single mechanism.

Full text

PDF
737

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Condamine H. Sur la régulation de la production de proline chez E. Coli K 12. Ann Inst Pasteur (Paris) 1971 Feb;120(2):126–143. [PubMed] [Google Scholar]
  3. Dendinger S., Brill W. J. Regulation of proline degradation in Salmonella typhimurium. J Bacteriol. 1970 Jul;103(1):144–152. doi: 10.1128/jb.103.1.144-152.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOWDEN L., NEALE S., TRISTRAM H. EFFECT OF 3,4-DEHYDRO-DL-PROLINE ON GROWTH AND PROTEIN SYNTHESIS. Nature. 1963 Jul 6;199:35–38. doi: 10.1038/199035a0. [DOI] [PubMed] [Google Scholar]
  5. Gutnick D., Calvo J. M., Klopotowski T., Ames B. N. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol. 1969 Oct;100(1):215–219. doi: 10.1128/jb.100.1.215-219.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hammer-Jespersen K., Munch-Petersen A., Schwartz M., Nygaard P. Induction of enzymes involed in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K 12. Eur J Biochem. 1971 Apr 30;19(4):533–538. doi: 10.1111/j.1432-1033.1971.tb01345.x. [DOI] [PubMed] [Google Scholar]
  7. Hirata H., Altendorf K., Harold F. M. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J Biol Chem. 1974 May 10;249(9):2939–2945. [PubMed] [Google Scholar]
  8. Kasahara M., Anraku Y. Transport of sugars and amino acids in bacteria. XI. Mechanism of energy coupling reaction for the concentrative uptake of proline by Escherichia coli membrane vesicles. J Biochem. 1974 Nov;76(5):977–983. [PubMed] [Google Scholar]
  9. Kobayashi H., Kin E., Anraku Y. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. J Biochem. 1974 Aug;76(2):251–261. doi: 10.1093/oxfordjournals.jbchem.a130567. [DOI] [PubMed] [Google Scholar]
  10. Morikawa A., Suzuki H., Anraku Y. Transport of sugars and amino acids in bacteria. 8. Properties and regulation of the active transport reaction of proline in Escherichia coli. J Biochem. 1974 Feb;75(2):229–241. doi: 10.1093/oxfordjournals.jbchem.a130390. [DOI] [PubMed] [Google Scholar]
  11. Morris H., Schlesinger M. J. Effects of proline analogues on the formation of alkaline phosphatase in Escherichia coli. J Bacteriol. 1972 Jul;111(1):203–210. doi: 10.1128/jb.111.1.203-210.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newell S. L., Brill W. J. Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation. J Bacteriol. 1972 Aug;111(2):375–382. doi: 10.1128/jb.111.2.375-382.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ratzkin B., Roth J. Cluster of genes controlling proline degradation in Salmonella typhimurium. J Bacteriol. 1978 Feb;133(2):744–754. doi: 10.1128/jb.133.2.744-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith H. O., Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. doi: 10.1016/0042-6822(67)90164-x. [DOI] [PubMed] [Google Scholar]
  15. Sussman A. J., Gilvarg C. Peptide transport and metabolism in bacteria. Annu Rev Biochem. 1971;40:397–408. doi: 10.1146/annurev.bi.40.070171.002145. [DOI] [PubMed] [Google Scholar]
  16. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES