Abstract
Reversion to tryptophan independence induced by 365-nm and 254-nm radiation was studied in Escherichia coli WP2s (B/r trp uvrA). Under aerobic conditions, the mutant frequency responses was of the fluence-square or "two-hit" type at both 365 and 254 nm when revertants were assayed on minimal agar supplemented with 2% nutrient broth (SEM plates). In contrast, when mutants were assayed on minimal agar supplemented with tryptophan only, the revertant yield was reduced to very low values at 365 nm, whereas values substantially greater than with SEM plates were obtained at 254 nm. Premutational lesions induced by both 365-nm and 254-nm radiation were photoreactivated more than 10-fold when assayed on SEM plates, implicating pyrimidine dimers as premutational lesions at both wavelengths. The strong photoreactivation of 365-nm-induced mutagenesis contrasted strikingly with the complete absence of photoreactivation of 365-nm-induced lethality in this strain.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashwood-Smith M. J., Copeland J., Wilcockson J. Sunlight and frozen bacteria. Nature. 1967 Apr 1;214(5083):33–35. doi: 10.1038/214033a0. [DOI] [PubMed] [Google Scholar]
- Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908. doi: 10.1093/genetics/57.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges B. A., Law J., Munson R. J. Mutagenesis in Escherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation. Mol Gen Genet. 1968;103(3):266–273. doi: 10.1007/BF00273698. [DOI] [PubMed] [Google Scholar]
- Bridges B. A. Mechanisms of radiation mutagenesis in cellular and subcellular systems. Annu Rev Nucl Sci. 1969;19:139–178. doi: 10.1146/annurev.ns.19.120169.001035. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Webb R. B. Photoreactivation of 365 nm inactivation in Escherichia coli. Mutat Res. 1972 Jul;15(3):348–352. doi: 10.1016/0027-5107(72)90080-2. [DOI] [PubMed] [Google Scholar]
- Cabrera-Juarez E., Espinosa-Lara M. Lethal and mutagenic action of black light (325 to 400 nm) on Haemophilus influenzae in the presence of air. J Bacteriol. 1974 Mar;117(3):960–964. doi: 10.1128/jb.117.3.960-964.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbera-Juárez E., Setlow J. K. Formation of a thymine photoproduct in transforming DNA by near ultraviolet irradiation. Biochim Biophys Acta. 1977 Mar 18;475(2):315–322. doi: 10.1016/0005-2787(77)90022-3. [DOI] [PubMed] [Google Scholar]
- Davies D. J., Tyler S. A., Webb R. B. A sequential repair model of photoreactivation in bacteria. Photochem Photobiol. 1970 Jun;11(6):371–386. doi: 10.1111/j.1751-1097.1970.tb06010.x. [DOI] [PubMed] [Google Scholar]
- Doudney C. O. The two-lesion hypothesis for UV-induced mutation in relation to recovery of capacity for DNA replication. Basic Life Sci. 1975;5A:389–392. doi: 10.1007/978-1-4684-2895-7_52. [DOI] [PubMed] [Google Scholar]
- Eisenstark A. Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells. Adv Genet. 1971;16:167–198. [PubMed] [Google Scholar]
- Green M. H., Muriel W. J. Mutagen testing using TRP+ reversion in Escherichia coli. Mutat Res. 1976 Feb;38(1):3–32. doi: 10.1016/0165-1161(76)90076-5. [DOI] [PubMed] [Google Scholar]
- Hariharan P. V., Cerutti P. A. Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in HeLa cells. Biochemistry. 1977 Jun 14;16(12):2791–2795. doi: 10.1021/bi00631a032. [DOI] [PubMed] [Google Scholar]
- Kubitschek H. E. Mutagenesis by near-visible light. Science. 1967 Mar 24;155(3769):1545–1546. doi: 10.1126/science.155.3769.1545. [DOI] [PubMed] [Google Scholar]
- Setlow R. B. Cyclobutane-type pyrimidine dimers in polynucleotides. Science. 1966 Jul 22;153(3734):379–386. doi: 10.1126/science.153.3734.379. [DOI] [PubMed] [Google Scholar]
- Speck W. T., Rosenkranz H. S. Base substitution mutations induced in Salmonella strains by visible light (450 nm). Photochem Photobiol. 1975 May;21(5):369–371. doi: 10.1111/j.1751-1097.1975.tb06687.x. [DOI] [PubMed] [Google Scholar]
- Swenson P. A., Setlow R. B. Inhibition of the induced formation of tryptophanase in Escherichia coli by near-ultraviolet radiation. J Bacteriol. 1970 Jun;102(3):815–819. doi: 10.1128/jb.102.3.815-819.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuveson R. W., Satterthwaite M. A. Comparison of ultraviolet and blacklight for the induction of nutritional independence at two loci in Neurospora crassa. Mutat Res. 1976 Aug;36(2):165–170. doi: 10.1016/0027-5107(76)90004-x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M. Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem Photobiol. 1973 Jan;17(1):69–73. doi: 10.1111/j.1751-1097.1973.tb06334.x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M., Ley R. D., Webb R. B. Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation. Photochem Photobiol. 1974 Nov;20(5):395–398. doi: 10.1111/j.1751-1097.1974.tb06593.x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M. Rec A+-dependent synergism between 365 NM and ionizing radiation in log-phase Escherichia coli: a model for oxygen-dependent near-UV inactivation by disruption of DNA repair. Photochem Photobiol. 1976 Jan;23(1):13–20. doi: 10.1111/j.1751-1097.1976.tb06764.x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M., Webb R. B., Brown M. S. Destruction of photoreactivating enzyme by 365 nm radiation. Photochem Photobiol. 1973 Oct;18(4):249–254. doi: 10.1111/j.1751-1097.1973.tb06420.x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M., Webb R. B. Reduced dimer excision in bacteria following near ultraviolet (365 nm) radiation. Mutat Res. 1973 Sep;19(3):361–364. doi: 10.1016/0027-5107(73)90238-8. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Brown M. S. Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations. Photochem Photobiol. 1976 Nov;24(5):425–432. doi: 10.1111/j.1751-1097.1976.tb06849.x. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Brown M. S., Tyrrell R. M. Lethal effects of pyrimidine dimers induced at 365 nm in strains of E. coli differing in repair capability. Mutat Res. 1976 Nov;37(2-3):163–172. doi: 10.1016/0027-5107(76)90029-4. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Malina M. M. Mutagenesis in Escherichia coli by visible light. Science. 1967 May 26;156(3778):1104–1105. doi: 10.1126/science.156.3778.1104. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Malina M. M. Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of escherichia coli. Photochem Photobiol. 1970 Dec;12(6):457–468. doi: 10.1111/j.1751-1097.1970.tb06078.x. [DOI] [PubMed] [Google Scholar]
- Witkin E. M. Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system ("SOS repair") and its anomalous expression in these strains. Genetics. 1975 Jun;79 (Suppl):199–213. [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol. 1969;23:487–514. doi: 10.1146/annurev.mi.23.100169.002415. [DOI] [PubMed] [Google Scholar]
