Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Mar;133(3):1156–1162. doi: 10.1128/jb.133.3.1156-1162.1978

Intraperiplasmic Growth of Bdellovibrio bacteriovorus on Heat-Treated Escherichia coli

Robert B Hespell 1
PMCID: PMC222147  PMID: 346559

Abstract

Heat treatment (55°C for 40 min) of cell suspensions in buffer (ca. 3 × 109 cells per ml) of Escherichia coli ML35 caused a 4- to 4.5-log loss of cell viability. Similar results were found for several other E. coli strains that were examined. As a result of this heat treatment, 260-nm- and 280-nm-absorbing materials were released into the suspending buffer, along with about 10% of the total cellular radioactivity, when cells uniformly labeled with 14C were used. In comparison with untreated cells, heat-treated E. coli ML35 cells showed (i) no significant changes in macromolecular composition other than ca. 22% less RNA content, (ii) an increased permeability to o-nitrophenyl-β-d-galactopyranoside (a compound to which untreated cells are impermeable), (iii) almost complete loss of respiratory potential, and (iv) substantial losses of numerous glycolytic enzyme activities in cell extracts prepared from these cells. Intraperiplasmic development of Bdellovibrio bacteriovorus 109J with heat-treated E. coli ML35 as substrate cells appeared normal when observed microscopically, although bdellovibrio attachment and resultant bdelloplast formation were slightly retarded. No significant changes were observed in cell yields or in the ratios and contents of DNA, RNA, or protein between bdellovibrios harvested from untreated cells and those from heat-treated substrate cells after single-developmental-cycle growth on these cells. The average YATP values for intraperiplasmic growth on untreated and heat-treated substrate cells were 16.0 and 17.9, respectively. It is concluded that intraperiplasmic bdellovibrio growth on gently heat-treated E. coli substrate cells is very similar to growth on untreated substrate cells, even though the former substrate cells are nonviable and substantially impaired in many metabolic activities.

Full text

PDF
1156

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crothers S. F., Fackrell H. B., Huang J. C., Robinson J. Relationship between Bdellovibrio bacteriovorus 6-5-S and autoclaved host bacteria. Can J Microbiol. 1972 Dec;18(12):1941–1948. doi: 10.1139/m72-300. [DOI] [PubMed] [Google Scholar]
  3. Hespell R. B., Canale-Parola E. Carbohydrate metabolism in Spirochaeta stenostrepta. J Bacteriol. 1970 Jul;103(1):216–226. doi: 10.1128/jb.103.1.216-226.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hespell R. B. Glycolytic and tricarboxylic acid cycle enzyme activities during intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli. J Bacteriol. 1976 Nov;128(2):677–680. doi: 10.1128/jb.128.2.677-680.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hespell R. B., Miozzari G. F., Rittenberg S. C. Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol. 1975 Aug;123(2):481–491. doi: 10.1128/jb.123.2.481-491.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hespell R. B., Rosson R. A., Thomashow M. F., Rittenberg S. C. Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J Bacteriol. 1973 Mar;113(3):1280–1288. doi: 10.1128/jb.113.3.1280-1288.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horowitz A. T., Kessel M., Shilo M. Growth cycle of predacious Bdellovibrios in a host-free extract system and some properties of the host extract. J Bacteriol. 1974 Jan;117(1):270–282. doi: 10.1128/jb.117.1.270-282.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang J. C., Starr M. P. Effects of calcium and magnesium ions and host viability on growth of bdellovibrios. Antonie Van Leeuwenhoek. 1973;39(1):151–167. doi: 10.1007/BF02578850. [DOI] [PubMed] [Google Scholar]
  9. Ishiguro E. E. A growth initiation factor for host-independent derivatives of Bdellovibrio bacteriovorus. J Bacteriol. 1973 Jul;115(1):243–252. doi: 10.1128/jb.115.1.243-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Josephson B. L., Fraenkel D. G. Sugar metabolism in transketolase mutants of Escherichia coli. J Bacteriol. 1974 Jun;118(3):1082–1089. doi: 10.1128/jb.118.3.1082-1089.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuenen J. G., Rittenberg S. C. Incorporation of long-chain fatty acids of the substrate organism by Bdellovibrio bacteriovorus during intraperiplasmic growth. J Bacteriol. 1975 Mar;121(3):1145–1157. doi: 10.1128/jb.121.3.1145-1157.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matin A., Rittenberg S. C. Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on pseudomonas putida and escherichia coli. J Bacteriol. 1972 Sep;111(3):664–673. doi: 10.1128/jb.111.3.664-673.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pritchard M. A., Langley D., Rittenberg S. Effects of methotrexate on intraperiplasmic and axenic growth of Bdellovibrio bacteriovorus. J Bacteriol. 1975 Mar;121(3):1131–1136. doi: 10.1128/jb.121.3.1131-1136.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rittenberg S. C., Hespell R. B. Energy efficiency of intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol. 1975 Mar;121(3):1158–1165. doi: 10.1128/jb.121.3.1158-1165.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rittenberg S. C., Shilo M. Early host damage in the infection cycle of Bdellovibrio bacteriovorus. J Bacteriol. 1970 Apr;102(1):149–160. doi: 10.1128/jb.102.1.149-160.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross E. J., Robinow C. F., Robinson J. Intracellular growth of Bdellovibrio bacteriovorus 6-5-S in heat-killed Spirillum serpens VHL. Can J Microbiol. 1974 Jun;20(6):847–851. doi: 10.1139/m74-130. [DOI] [PubMed] [Google Scholar]
  17. STOLP H., STARR M. P. BDELLOVIBRIO BACTERIOVORUS GEN. ET SP. N., A PREDATORY, ECTOPARASITIC, AND BACTERIOLYTIC MICROORGANISM. Antonie Van Leeuwenhoek. 1963;29:217–248. doi: 10.1007/BF02046064. [DOI] [PubMed] [Google Scholar]
  18. Varon M., Drucker I., Shilo M. Early effects of Bdellovibrio infection on the syntheses of protein and RNA of host bacteria. Biochem Biophys Res Commun. 1969 Oct 22;37(3):518–525. doi: 10.1016/0006-291x(69)90946-2. [DOI] [PubMed] [Google Scholar]
  19. Varon M., Shil M. Interacton of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli B by Bdellovibrio bacteriovorus. J Bacteriol. 1968 Mar;95(3):744–753. doi: 10.1128/jb.95.3.744-753.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Varon M., Shilo M. Attachment of Bdellovibrio bacteriovorus to cell wall mutants of Salmonella spp. and Escherichia coli. J Bacteriol. 1969 Feb;97(2):977–979. doi: 10.1128/jb.97.2.977-979.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Varon M., Shilo M. Interaction of Bdellovibrio bacteriovorus and host bacteria. II. Intracellular growth and development of Bdellovibrio bacteriovorus in liquid cultures. J Bacteriol. 1969 Jul;99(1):136–141. doi: 10.1128/jb.99.1.136-141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yagil E., Beacham I. R. Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol. 1975 Feb;121(2):401–405. doi: 10.1128/jb.121.2.401-405.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES