Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Mar;133(3):1175–1180. doi: 10.1128/jb.133.3.1175-1180.1978

Interrelationships of isoacceptor phenylalanine tRNA species of Rhodopseudomonas sphaeroides.

A J Razel, E D Gray
PMCID: PMC222149  PMID: 641006

Abstract

The phenylalanine tRNA of Rhodopseudomonas sphaeroides was fractionated on benzoylated diethylaminoethyl-cellulose into four isoaccepting species (tRNAPheI to IV). tRNAPheIII represented 80% of the total tRNAPhe in anaerobic, photosynthetically grown organisms, whereas in cultures grown aerobically for prolonged periods, tRNAPheII represented 80% of the total. In cultures adapting to aerobic growth, the addition of rifampin resulted in a tRNAPhe profile characteristic of anaerobic-photosynthetic conditions due to the conversion of tRNAPheII to tRNAPheIII. In fully adapted aerobic cultures, this conversion was inhibited in the presence of chloramphenicol or rifampin. The conversion of tRNAPheIII to tRNAPheII was not observable in vivo. It is proposed that an enzymic activity synthesized during anaerobic-photosynthetic growth was responsible for the conversion.

Full text

PDF
1175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  2. Cost H. B., Gray E. D. Rapidly labeled RNA synthesis during morphogenesis. Biochim Biophys Acta. 1967 May 30;138(3):601–604. doi: 10.1016/0005-2787(67)90557-6. [DOI] [PubMed] [Google Scholar]
  3. Dejesus T. G., Gray E. D. Isoaccepting transfer RNA species in differing morphogenetic states of Rhodopseudomonas spheroides. Biochim Biophys Acta. 1971 Dec 30;254(3):419–428. doi: 10.1016/0005-2787(71)90875-6. [DOI] [PubMed] [Google Scholar]
  4. Gray E. D. Studies on the adaptive formation of photosynthetic structures in Rhodopseudomonas spheroides. I. Synthesis of macromolecules. Biochim Biophys Acta. 1967 May 30;138(3):550–563. doi: 10.1016/0005-2787(67)90551-5. [DOI] [PubMed] [Google Scholar]
  5. Keith G., Rogg H., Dirheimer G., Menichi B., Heyham T. Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis. FEBS Lett. 1976 Jan 15;61(2):120–123. doi: 10.1016/0014-5793(76)81017-4. [DOI] [PubMed] [Google Scholar]
  6. Littauer U. Z., Inouye H. Regulation of tRNA. Annu Rev Biochem. 1973;42:439–470. doi: 10.1146/annurev.bi.42.070173.002255. [DOI] [PubMed] [Google Scholar]
  7. Setlow P., Primus G., Deutscher M. P. Absence of 3'-terminal residues from transfer ribonucleic acid of dormant spores of Bacillus megaterium. J Bacteriol. 1974 Jan;117(1):126–132. doi: 10.1128/jb.117.1.126-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES