Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Mar;133(3):1323–1328. doi: 10.1128/jb.133.3.1323-1328.1978

Divalent cation transport systems of Rhodopseudomonas capsulata.

P Jasper, S Silver
PMCID: PMC222169  PMID: 641011

Abstract

Separate divalent cation transport systems for energy-dependent uptake of Mg2+ and Mn2+ were found both with aerobically and heterotrophically grown and with photosynthetically grown cells of Rhodopseudomonas capsulata. The maximum rate of Mg2+ uptake differed between photosynthetic and aerobic cells, while the Km for the Mg2+ transport system was constant. Photosynthetic midlog-phase cells exhibited Km's for uptake of about 55 micrometer Mg2+ and 0.5 micrometer Mn2+. The Vmax's also differed between the two systems: 0.6 to 1.8 mumol/min per g (dry weight) of cells for Mg2+, but only 0.020 mumol/min per g for Mn2+, making the distinction between a "macro-requirement" system and a system functioning at trace nutrient levels. Calcium was not normally taken up by intact cells of R. capsulata. However, chromatophore membranes isolated from photosynthetic cells took up Ca2+ by an energy-dependent process.

Full text

PDF
1323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp R. S., Silver S., Hopkins J. W. Uptake of Mg2+ by KB cells. Biochim Biophys Acta. 1971 Jan 5;225(1):71–76. doi: 10.1016/0005-2736(71)90285-9. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharyya P. Active Transport of Manganese in Isolated Membranes of Escherichia coli. J Bacteriol. 1970 Dec;104(3):1307–1311. doi: 10.1128/jb.104.3.1307-1311.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhattacharyya P. Active transport of manganese in isolated membrane vesicles of Bacillus subtilis. J Bacteriol. 1975 Jul;123(1):123–127. doi: 10.1128/jb.123.1.123-127.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenstadt E., Fisher S., Der C. L., Silver S. Manganese transport in Bacillus subtilis W23 during growth and sporulation. J Bacteriol. 1973 Mar;113(3):1363–1372. doi: 10.1128/jb.113.3.1363-1372.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher S., Buxbaum L., Toth K., Eisenstadt E., Silver S. Regulation of manganese accumulation and exchange in Bacillus subtilis W23. J Bacteriol. 1973 Mar;113(3):1373–1380. doi: 10.1128/jb.113.3.1373-1380.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hellingwerf K. J., Michels P. A., Dorpema J. W., Konings W. N. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur J Biochem. 1975 Jul 1;55(2):397–406. doi: 10.1111/j.1432-1033.1975.tb02175.x. [DOI] [PubMed] [Google Scholar]
  8. Jackson J. B., Crofts A. R., von Stedingk L. V. Ion transport induced by light and antibiotics IN CHROMATOPHORES FROM Rhodospirillum rubrum. Eur J Biochem. 1968 Oct 17;6(1):41–54. doi: 10.1111/j.1432-1033.1968.tb00417.x. [DOI] [PubMed] [Google Scholar]
  9. Jasper P. Potassium transport system of Rhodopseudomonas capsulata. J Bacteriol. 1978 Mar;133(3):1314–1322. doi: 10.1128/jb.133.3.1314-1322.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi Y., Nishimura M. Studies on ion transport in cells of photosynthetic bacteria. II. Analysis of reversed hydrogen ion change. J Biochem. 1973 Dec;74(6):1227–1232. doi: 10.1093/oxfordjournals.jbchem.a130350. [DOI] [PubMed] [Google Scholar]
  11. Nelson D. L., Kennedy E. P. Transport of magnesium by a repressible and a nonrepressible system in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1091–1093. doi: 10.1073/pnas.69.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park M. H., Wong B. B., Lusk J. E. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol. 1976 Jun;126(3):1096–1103. doi: 10.1128/jb.126.3.1096-1103.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosen B. P., McClees J. S. Active transport of calcium in inverted membrane vesicles of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5042–5046. doi: 10.1073/pnas.71.12.5042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scholes P., Mitchell P., Moyle J. The polarity of proton translocation in some photosynthetic microorganisms. Eur J Biochem. 1969 Apr;8(3):450–454. doi: 10.1111/j.1432-1033.1969.tb00548.x. [DOI] [PubMed] [Google Scholar]
  15. Scribner H., Eisenstadt E., Silver S. Magnesium transport in Bacillus subtilis W23 during growth and sporulation. J Bacteriol. 1974 Mar;117(3):1224–1230. doi: 10.1128/jb.117.3.1224-1230.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Silver S., Clark D. Magnesium transport in Escherichia coli. J Biol Chem. 1971 Feb 10;246(3):569–576. [PubMed] [Google Scholar]
  17. Silver S., Johnseine P., King K. Manganese Active Transport in Escherichia coli. J Bacteriol. 1970 Dec;104(3):1299–1306. doi: 10.1128/jb.104.3.1299-1306.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsuchiya T., Rosen B. P. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli. J Biol Chem. 1976 Feb 25;251(4):962–967. [PubMed] [Google Scholar]
  19. Tsuchiya T., Rosen B. P. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli. J Biol Chem. 1975 Oct 10;250(19):7687–7692. [PubMed] [Google Scholar]
  20. Yen H. C., Marrs B. Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol. 1976 May;126(2):619–629. doi: 10.1128/jb.126.2.619-629.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES