Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Mar;133(3):1437–1443. doi: 10.1128/jb.133.3.1437-1443.1978

Turnover-synthesis of chloroplast DNA in developing chloroplasts.

A M Walfield, C L Hershberger
PMCID: PMC222182  PMID: 417068

Abstract

The mechanism for the turnover-synthesis of chloroplast DNA in the absence of net synthesis during the chloroplast maturation in Euglena gracilis was determined. DNA synthesis was measured by incorporation of32Pi into chloroplast DNA. The density label, 15N, was incorporated to examine the mechanism of turnover-synthesis. The newly synthesized segments represent a replacement of segments in the DNA containing 1.5 X 10(3) to 6.1 X 10(3) nucleotides. Twenty-three fragments of chloroplast DNA, generated by digestion with the restriction endonuclease EcoRI, became labeled with 32Pi. Turnover-synthesis, therefore, replaces segments throughout the molecule of chloroplast DNA.

Full text

PDF
1437

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker W. B., Buetow D. E. Hydrolytic enzymes of Euglena gracilis: characterization and activity as a function of culture age and carbon deprivation. J Protozool. 1976 Feb;23(1):167–176. doi: 10.1111/j.1550-7408.1976.tb05265.x. [DOI] [PubMed] [Google Scholar]
  2. Clayton D. A., Doda J. N., Friedberg E. C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2777–2781. doi: 10.1073/pnas.71.7.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heizmann P. La synthese des RNA ribosomiques au cours de l'eclairement d'Euglenes etiolees. Biochim Biophys Acta. 1974 Jul 11;353(3):301–312. [PubMed] [Google Scholar]
  4. Heizmann P., Trabuchet G., Verdier G., Freyssinet G., Nigon V. Influence de l'éclairement sur l'évolution des polysomes dans des cultures d'Euglena gracilis étiolées. Biochim Biophys Acta. 1972 Aug 16;277(1):149–160. [PubMed] [Google Scholar]
  5. Manning J. E., Richards O. C. Synthesis and turnover of Euglena gracilis nuclear and chlorplast deoxyribonucleic acid. Biochemistry. 1972 May 23;11(11):2036–2043. doi: 10.1021/bi00761a007. [DOI] [PubMed] [Google Scholar]
  6. McCrea J. M., Hershberger C. L. Chloroplast DNA codes for transfer RNA. Nucleic Acids Res. 1976 Aug;3(8):2005–2018. doi: 10.1093/nar/3.8.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mielenz J. R., Milner J. J., Hershberger C. L. Analysis of Euglena gracilis chloroplast deoxyribonucleic acid with a restriction endonuclease, EcoRI. J Bacteriol. 1977 May;130(2):860–868. doi: 10.1128/jb.130.2.860-868.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PETTIJOHN D., HANAWALT P. EVIDENCE FOR REPAIR-REPLICATION OF ULTRAVIOLET DAMAGED DNA IN BACTERIA. J Mol Biol. 1964 Aug;9:395–410. doi: 10.1016/s0022-2836(64)80216-3. [DOI] [PubMed] [Google Scholar]
  9. Pienkos P., Walfield A., Hershberger C. L. Effect of nalidixic acid on Euglena gracilis: induced loss of chloroplast deoxyribonucleic acid. Arch Biochem Biophys. 1974 Dec;165(2):548–553. doi: 10.1016/0003-9861(74)90281-1. [DOI] [PubMed] [Google Scholar]
  10. Prakash L. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light. J Mol Biol. 1975 Nov 15;98(4):781–795. doi: 10.1016/s0022-2836(75)80010-6. [DOI] [PubMed] [Google Scholar]
  11. Reger B. J., Smillie R. M., Fuller R. C. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis. Plant Physiol. 1972 Jul;50(1):24–27. doi: 10.1104/pp.50.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SCHIFF J. A., LYMAN H., EPSTEIN H. T. Studies of chloroplast development in Euglena. II. Photoreversal of the u.v. inhibition of green colony formation. Biochim Biophys Acta. 1961 Jun 24;50:310–318. doi: 10.1016/0006-3002(61)90329-8. [DOI] [PubMed] [Google Scholar]
  13. Shinnick T. M., Lund E., Smithies O., Blattner F. R. Hybridization of labeled RNA to DNA in agarose gels. Nucleic Acids Res. 1975 Oct;2(10):1911–1929. doi: 10.1093/nar/2.10.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Simon T. J., Masker W. E., Hanawalt P. C. Selective inhibition of semiconservative DNA synthesis by nalidixic acid in permeabilized bacteria. Biochim Biophys Acta. 1974 May 17;349(2):271–274. doi: 10.1016/0005-2787(74)90089-6. [DOI] [PubMed] [Google Scholar]
  15. Slavik N. S., Hershberger C. L. Internal structural organization of chloroplast DNA from Euglena gracilis Z. J Mol Biol. 1976 May 25;103(3):563–581. doi: 10.1016/0022-2836(76)90217-5. [DOI] [PubMed] [Google Scholar]
  16. Slavik N. S., Hershberger C. L. The kinetic complexity of Euglena gracilis chloroplast DNA. FEBS Lett. 1975 Apr 1;52(2):171–174. doi: 10.1016/0014-5793(75)80799-x. [DOI] [PubMed] [Google Scholar]
  17. Slavik N., Stolarsky L., Hershberger C. L. Letter to the editor: Tetrahymena DNA forms a single band in alkaline density gradients. J Mol Evol. 1975 Mar 24;4(4):371–376. doi: 10.1007/BF01732538. [DOI] [PubMed] [Google Scholar]
  18. Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stolarsky L., Walfield A. M., Birch R. A., Hershberger C. L. Light-stimulated synthesis of chloroplast DNA. Biochim Biophys Acta. 1976 Apr 2;425(4):438–450. doi: 10.1016/0005-2787(76)90008-3. [DOI] [PubMed] [Google Scholar]
  20. Swinton D. C., Hanawalt P. C. Absence of ultraviolet-stimulated repair replication in the nuclear and chloroplast genomes of Chlamydomonas reinhardti. Biochim Biophys Acta. 1973 Feb 4;294(1):385–395. doi: 10.1016/0005-2787(73)90093-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES