Abstract
The oxaloacetate (OAA) decarboxylase (EC 4.1.1.3) activity of Acetobacter xylinum cells grown on glucose or glycerol is the same as that of cells grown on intermediates of the citrate cycle. The enzyme was purified 92-fold from extracts, and its molecular weight was determined to be 100,000 by gel filtration. Initial velocity studies revealed marked positive cooperativity for OAA (Hill coefficient [nH] = 1.8; S0.5 = 21 mM). The affinity of the enzyme for OAA was markedly increased upon addition of nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), and some other pyridine nucleotides. S0.5(OAA) decreased to 1 mM but nH and Vmax were unchanged. Saturation kinetics for the pyridine nucleotides were hyperbolic, and a half-maximal effect was obtained with 8 μM NAD and 30 μM NADP. The enzyme also catalyzed the exchange of 14CO2 into OAA but not the net carboxylation of pyruvate. Exchange activity, too, exhibited sigmoidal kinetics for OAA and was strongly stimulated by NAD at low substrate concentrations. The enzyme was inhibited by acetate competitively with respect to OAA. The KI for acetate (12 mM) was well within the physiological range of this compound inside the cell. The regulatory properties of the decarboxylase with respect to OAA cooperativity, NAD activation, and acetate inhibition were retained in situ within permeabilized cells. These properties seem to provide for a control mechanism which could insure the maintenance of OAA and the citrate cycle during growth of cells on glucose and, conversely, the required supply of pyruvate during growth on intermediates of the citrate cycle.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENZIMAN M., ABELIOVITZ A. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM. J Bacteriol. 1964 Feb;87:270–277. doi: 10.1128/jb.87.2.270-277.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENZIMAN M., BURGER-RACHAMIMOV H. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J Bacteriol. 1962 Oct;84:625–630. doi: 10.1128/jb.84.4.625-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENZIMAN M., HELLER N. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM. J Bacteriol. 1964 Dec;88:1678–1687. doi: 10.1128/jb.88.6.1678-1687.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benziman M., Eizen N. Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinum. J Biol Chem. 1971 Jan 10;246(1):57–61. [PubMed] [Google Scholar]
- Benziman M. Factors afecting the activity of pyruvate kinase of Acetobacter xylinum. Biochem J. 1969 May;112(5):631–636. doi: 10.1042/bj1120631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benziman M., Palgi A. Characterization and properties of the pyruvate phosphorylation system of Acetobacter xylinum. J Bacteriol. 1970 Oct;104(1):211–218. doi: 10.1128/jb.104.1.211-218.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benziman M. Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum. J Bacteriol. 1969 Jun;98(3):1005–1010. doi: 10.1128/jb.98.3.1005-1010.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CORWIN L. M. Oxaloacetic decarboxylase from rat liver mitochondria. J Biol Chem. 1959 Jun;234(6):1338–1341. [PubMed] [Google Scholar]
- Collier R. J. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975 Mar;39(1):54–85. doi: 10.1128/br.39.1.54-85.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton D. J., Rose I. A. Oxalacetate decarboxylase activity in muscle is due to pyruvate kinase. J Biol Chem. 1976 Jan 10;251(1):69–72. [PubMed] [Google Scholar]
- GROMET Z., SCHRAMM M., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells. Biochem J. 1957 Dec;67(4):679–689. doi: 10.1042/bj0670679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HORTON A. A., KORNBERG H. L. OXALOACETATE 4-CARBOXY-LYASE FROM PSEUDOMONAS OVALIS CHESTER. Biochim Biophys Acta. 1964 Aug 26;89:381–383. doi: 10.1016/0926-6569(64)90236-6. [DOI] [PubMed] [Google Scholar]
- Hsu R. Y., Lardy H. A. Pigeon liver malic enzyme. II. Isolation, crystallization, and some properties. J Biol Chem. 1967 Feb 10;242(3):520–526. [PubMed] [Google Scholar]
- KRAEMER L. M., CONN E. E., VENNESLAND B. The beta-carboxylases of plants. III. Oxalacetic-carboxylase of wheat germ. J Biol Chem. 1951 Feb;188(2):583–591. [PubMed] [Google Scholar]
- Kornfeld S., Benziman M., Milner Y. Alpha-ketoglutarate dehydrogenase complex of Acetobacter xylinum. Purification and regulatory properties. J Biol Chem. 1977 May 10;252(9):2940–2947. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- O'Brien R., Chuang D. T., Taylor B. L., Utter M. F. Novel enzymic machinery for the metabolism of oxalacetate, phosphoenolpyruvate, and pyruvate in Pseudomonas citronellolis. J Biol Chem. 1977 Feb 25;252(4):1257–1263. [PubMed] [Google Scholar]
- Opheim D., Bernlohr R. W. Purification and regulation of glucose-6-phosphate dehydrogenase from Bacillus licheniformis. J Bacteriol. 1973 Dec;116(3):1150–1159. doi: 10.1128/jb.116.3.1150-1159.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHRAMM M., GROMET Z., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. doi: 10.1042/bj0670669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHRAMM M., HESTRIN S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol. 1954 Aug;11(1):123–129. doi: 10.1099/00221287-11-1-123. [DOI] [PubMed] [Google Scholar]
- SCHRAMM M., KLYBAS V., RACKER E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem. 1958 Dec;233(6):1283–1288. [PubMed] [Google Scholar]
- Swissa M., Benziman M. Factors affecting the activity of citrate synthase of Acetobacter xylinum and its possible regulatory role. Biochem J. 1976 Feb 1;153(2):173–179. doi: 10.1042/bj1530173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swissa M., Weinhouse H., Benziman M. Activities of citrate synthase and other enzymes of Acetobacter xylinum in situ and in vitro. Biochem J. 1976 Feb 1;153(2):499–501. doi: 10.1042/bj1530499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinhouse H., Benziman M. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. J Bacteriol. 1976 Aug;127(2):747–754. doi: 10.1128/jb.127.2.747-754.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinhouse H., Benziman M. Regulation of gluconeogenesis in Acetobacter xylinum. Eur J Biochem. 1972 Jun 23;28(1):83–88. doi: 10.1111/j.1432-1033.1972.tb01886.x. [DOI] [PubMed] [Google Scholar]
