Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Apr;134(1):38–47. doi: 10.1128/jb.134.1.38-47.1978

Lipid and fatty acid composition of Gluconobacter oxydans before and after intracytoplasmic membrane formation.

D L Heefner, G W Claus
PMCID: PMC222215  PMID: 649571

Abstract

Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development.

Full text

PDF
38

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barridge J. K., Shively J. M. Phospholipids of the thiobacilli. J Bacteriol. 1968 Jun;95(6):2182–2185. doi: 10.1128/jb.95.6.2182-2185.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batzing B. L., Claus G. W. Fine structural changes of Acetobacter suboxydans during growth in a defined medium. J Bacteriol. 1973 Mar;113(3):1455–1461. doi: 10.1128/jb.113.3.1455-1461.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentley H. R., Whitehead J. K. Water-miscible solvents in the separation of amino-acids by paper chromatography. Biochem J. 1950 Mar;46(3):341–345. doi: 10.1042/bj0460341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem. 1967 Jul 10;242(13):3046–3056. [PubMed] [Google Scholar]
  5. CURZON G., GILTROW J. Aromatic aldehydes as specific chromatographic colour reagents for amino-acids. Nature. 1954 Feb 13;173(4398):314–315. doi: 10.1038/173314a0. [DOI] [PubMed] [Google Scholar]
  6. Claus G. W., Batzing B. L., Baker C. A., Goebel E. M. Intracytoplasmic membrane formation and increased oxidation of glycerol growth of Gluconobacter oxydans. J Bacteriol. 1975 Sep;123(3):1169–1183. doi: 10.1128/jb.123.3.1169-1183.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Consden R., Gordon A. H., Martin A. J. Qualitative analysis of proteins: a partition chromatographic method using paper. Biochem J. 1944;38(3):224–232. doi: 10.1042/bj0380224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  11. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  12. HEYNS K., ANDERS G. Uber Proteine und deren Abbauprodukte. III. Eine Einrichtung zur papierchromatographischen Analyse. Hoppe Seylers Z Physiol Chem. 1951 Mar;287(1-2):1–15. [PubMed] [Google Scholar]
  13. HORNING E. C., AHRENS E. H., Jr, LIPSKY S. R., MATTSON F. H., MEAD J. F., TURNER D. A., GOLDWATER W. H. QUANTITATIVE ANALYSIS OF FATTY ACIDS BY GAS-LIQUID CHROMATOGRAPHY. J Lipid Res. 1964 Jan;5:20–27. [PubMed] [Google Scholar]
  14. Heefner D. L., Claus G. W. Change in quantity of lipids and cell size during intracytoplasmic membrane formation in Gluconobacter oxydans. J Bacteriol. 1976 Mar;125(3):1163–1171. doi: 10.1128/jb.125.3.1163-1171.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lechevalier M. P. Lipids in bacterial taxonomy - a taxonomist's view. CRC Crit Rev Microbiol. 1977;5(2):109–210. doi: 10.3109/10408417709102311. [DOI] [PubMed] [Google Scholar]
  16. MUNIER R. Microchromatographie de partage sur papier des alcaloïdes et de diverses bases azotées biologiques. V. Séparation'des constituants azotés des phosphoaminolipides (choline, colamine, sérine). Bull Soc Chim Biol (Paris) 1951;33(7):862–867. [PubMed] [Google Scholar]
  17. REDFIELD R. R., BARRON E. S. G. Quantitative determination of amino acids in protein hydrolyzates by paper chromatography. Arch Biochem Biophys. 1952 Feb;35(2):443–461. doi: 10.1016/s0003-9861(52)80025-6. [DOI] [PubMed] [Google Scholar]
  18. REDFIELD R. R. Two-dimensional paper chromatographic systems with high resolving power for amino acids. Biochim Biophys Acta. 1953 Feb;10(2):344–345. doi: 10.1016/0006-3002(53)90260-1. [DOI] [PubMed] [Google Scholar]
  19. SVENNERHOLM L. The quantitative estimation of cerebrosides in nervous tissue. J Neurochem. 1956 May;1(1):42–53. doi: 10.1111/j.1471-4159.1956.tb12053.x. [DOI] [PubMed] [Google Scholar]
  20. Tornabene T. G., Gelpi E., Oró J. Identification of fatty acids and aliphatic hydrocarbons in Sarcina lutea by gas chromatography and combined gas chromatography-mass spectrometry. J Bacteriol. 1967 Aug;94(2):333–343. doi: 10.1128/jb.94.2.333-343.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. White D. C., Cox R. H. Indentification and localization of the fatty acids in Haemophilus parainfluenzae. J Bacteriol. 1967 Mar;93(3):1079–1088. doi: 10.1128/jb.93.3.1079-1088.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. White D. C., Frerman F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1854–1867. doi: 10.1128/jb.94.6.1854-1867.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White D. C. Lipid composition of the electron transport membrane of Haemophilus parainfluenzae. J Bacteriol. 1968 Oct;96(4):1159–1170. doi: 10.1128/jb.96.4.1159-1170.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES