Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 May;134(2):401–411. doi: 10.1128/jb.134.2.401-411.1978

Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

David G Taylor 1, Peter W Trudgill 1
PMCID: PMC222266  PMID: 207665

Abstract

Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway.

Full text

PDF
401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEER C. T., DICKENS F., PEARSON J. The aromatization of hydrogenated derivatives of benzoic acid in animal tissues. Biochem J. 1951 Feb;48(2):222–237. doi: 10.1042/bj0480222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babior B. M., Bloch K. Aromatization of cyclohexanecarboxylic acid. J Biol Chem. 1966 Aug 25;241(16):3643–3651. [PubMed] [Google Scholar]
  3. Beam H. W., Perry J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol. 1974 May;118(2):394–399. doi: 10.1128/jb.118.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brewster D., Jones R. S., Parke D. V. The metabolism of cyclohexanecarboxylate in the rat. Biochem J. 1977 Jun 15;164(3):595–600. doi: 10.1042/bj1640595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
  6. Dagley S., Geary P. J., Wood J. M. The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J. 1968 Oct;109(4):559–568. doi: 10.1042/bj1090559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davey J. F., Trudgill P. W. The metabolism of trans-cyclohexan-1,2-diol by an Acinetobacter species. Eur J Biochem. 1977 Mar 15;74(1):115–127. doi: 10.1111/j.1432-1033.1977.tb11373.x. [DOI] [PubMed] [Google Scholar]
  8. Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
  9. Donoghue N. A., Trudgill P. W. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur J Biochem. 1975 Dec 1;60(1):1–7. doi: 10.1111/j.1432-1033.1975.tb20968.x. [DOI] [PubMed] [Google Scholar]
  10. Dutton P. L., Evans W. C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochem J. 1969 Jul;113(3):525–536. doi: 10.1042/bj1130525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffin M., Trudgill P. W. Purification and properties of cyclopentanone oxygenase of Pseudomonas NCIB 9872. Eur J Biochem. 1976 Mar 16;63(1):199–209. doi: 10.1111/j.1432-1033.1976.tb10222.x. [DOI] [PubMed] [Google Scholar]
  12. Griffin M., Trudgill P. W. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. Biochem J. 1972 Sep;129(3):595–603. doi: 10.1042/bj1290595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guilbert C. C., Chung A. E. Metabolism of cyclopropanecarboxylic acid. A new role for carnitine. J Biol Chem. 1974 Feb 25;249(4):1026–1030. [PubMed] [Google Scholar]
  14. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  15. Kaneda T. Enzymatic aromatization of 4-ketocyclohexanecarboxylic acid to p-hydroxybenzoic acid. Biochem Biophys Res Commun. 1974 May 7;58(1):140–144. doi: 10.1016/0006-291x(74)90902-4. [DOI] [PubMed] [Google Scholar]
  16. Norris D. B., Trudgill P. W. The metabolism of cyclohexanol by Nocardia globerula CL1. Biochem J. 1971 Feb;121(3):363–370. doi: 10.1042/bj1210363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
  18. PRAIRIE R. L., TALALAY P. Enzymatic formation of testololactone. Biochemistry. 1963 Jan-Feb;2:203–208. doi: 10.1021/bi00901a039. [DOI] [PubMed] [Google Scholar]
  19. RHODES M. E. The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. J Gen Microbiol. 1958 Jun;18(3):639–648. doi: 10.1099/00221287-18-3-639. [DOI] [PubMed] [Google Scholar]
  20. ROSENBERGER R. F., ELSDEN S. R. The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol. 1960 Jun;22:726–739. doi: 10.1099/00221287-22-3-726. [DOI] [PubMed] [Google Scholar]
  21. Rho E. M., Evans W. C. The aerobic metabolism of cyclohexanecarboxylic acid by Acinetobacter anitratum. Biochem J. 1975 Apr;148(1):11–15. doi: 10.1042/bj1480011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STANIER R. Y., INGRAHAM J. L. Protocatechuic acid oxidase. J Biol Chem. 1954 Oct;210(2):799–808. [PubMed] [Google Scholar]
  23. Sala-Trepat J. M., Murray K., Williams P. A. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Eur J Biochem. 1972 Jul 24;28(3):347–356. doi: 10.1111/j.1432-1033.1972.tb01920.x. [DOI] [PubMed] [Google Scholar]
  24. Schiller J. G., Chung A. E. The metabolism of cyclopropanecarboxylic acid. J Biol Chem. 1970 Nov 10;245(21):5857–5864. [PubMed] [Google Scholar]
  25. Smith D. I., Callely A. G. The microbial degradation of cyclohexane carboxylic acid. J Gen Microbiol. 1975 Nov;91(1):210–212. doi: 10.1099/00221287-91-1-210. [DOI] [PubMed] [Google Scholar]
  26. Tokuyama T., Kaneda T. Corynebacterium cyclohexanicum n. sp.: a cyclohexanecarboxylic acid utilizing bacterium. Can J Microbiol. 1973 Aug;19(8):937–942. doi: 10.1139/m73-150. [DOI] [PubMed] [Google Scholar]
  27. Whittle P. J., Lunt D. O., Evans W. C. Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans. 1976;4(3):490–491. doi: 10.1042/bst0040490. [DOI] [PubMed] [Google Scholar]
  28. Williams R. J., Evans W. C. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway. Biochem J. 1975 Apr;148(1):1–10. doi: 10.1042/bj1480001a. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES