Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;75(1):34–39. doi: 10.1038/bjc.1997.6

Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors.

C J Dixon 1, W B Bowler 1, P Fleetwood 1, A F Ginty 1, J A Gallagher 1, J A Carron 1
PMCID: PMC2222689  PMID: 9000595

Abstract

Nucleotides such as ATP can act as extracellular effector molecules by interaction with specific cellular receptors known as P2-purinoceptors. Recently, we cloned the human P2U purinoceptor from osteoclastoma and demonstrated its expression in skeletal tissues. In the current study we have investigated the expression of P2U purinoceptors in human breast tumour cell lines and examined functional effects of extracellular nucleotides on these cells. By reverse transcription-linked polymerase chain reaction (RT-PCR) the expression of mRNA for P2U purinoceptors was demonstrated in four human breast cancer cell lines, Hs578T, MCF-7, SK-Br3 and T47-D. In MCF-7 cells, extracellular ATP (1-100 microM) elevated intracellular free calcium concentration [Ca2+]i, indicating that these cells express functional P2-purinoceptors. UTP elevated [Ca2+]i in an identical manner to ATP, whereas 2-methylthioATP was completely ineffective, and ADP only partially effective. This pharmacological profile suggests that the P2U subtype may be the only P2-purinoceptor expressed by these cells. The functional significance of P2U purinoceptor expression by MCF-7 cells was investigated by analysing the effects of extracellular ATP on cell proliferation. The slowly hydrolysed analogue of ATP, ATPgammaS (which was also shown to elevate [Ca2+]i), induced proliferation of MCF-7 cells when added daily to serum-free cultures over a period of 3 days. ATPgammaS-induced proliferation was demonstrated by three separate methods, detection by scintillation counting of [3H]thymidine incorporation, immunocytochemical detection of 5-bromo-2-deoxyuridine incorporation and direct counting of cell numbers. These data suggest that ATP, possibly released at sites of tissue injury or inflammation, may be capable of growth factor action in promotion of tumour proliferation or progression.

Full text

PDF
34

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
  2. Barnard E. A., Burnstock G., Webb T. E. G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci. 1994 Mar;15(3):67–70. doi: 10.1016/0165-6147(94)90280-1. [DOI] [PubMed] [Google Scholar]
  3. Batra S., Fadeel I. Release of intracellular calcium and stimulation of cell growth by ATP and histamine in human ovarian cancer cells (SKOV-3). Cancer Lett. 1994 Feb 28;77(1):57–63. doi: 10.1016/0304-3835(94)90348-4. [DOI] [PubMed] [Google Scholar]
  4. Birch M. A., Carron J. A., Scott M., Fraser W. D., Gallagher J. A. Parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor expression and mitogenic responses in human breast cancer cell lines. Br J Cancer. 1995 Jul;72(1):90–95. doi: 10.1038/bjc.1995.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boarder M. R., Weisman G. A., Turner J. T., Wilkinson G. F. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci. 1995 Apr;16(4):133–139. doi: 10.1016/s0165-6147(00)89001-x. [DOI] [PubMed] [Google Scholar]
  6. Bowler W. B., Birch M. A., Gallagher J. A., Bilbe G. Identification and cloning of human P2U purinoceptor present in osteoclastoma, bone, and osteoblasts. J Bone Miner Res. 1995 Jul;10(7):1137–1145. doi: 10.1002/jbmr.5650100720. [DOI] [PubMed] [Google Scholar]
  7. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  8. Dubyak G. R. Extracellular ATP activates polyphosphoinositide breakdown and Ca2+ mobilization in Ehrlich ascites tumor cells. Arch Biochem Biophys. 1986 Feb 15;245(1):84–95. doi: 10.1016/0003-9861(86)90192-x. [DOI] [PubMed] [Google Scholar]
  9. Dubyak G. R., Fedan J. S. The biologic actions of extracellular adenosine triphosphate. Compr Ther. 1990 Apr;16(4):57–61. [PubMed] [Google Scholar]
  10. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  11. Erb L., Lustig K. D., Sullivan D. M., Turner J. T., Weisman G. A. Functional expression and photoaffinity labeling of a cloned P2U purinergic receptor. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10449–10453. doi: 10.1073/pnas.90.22.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gonzalez F. A., Alfonzo R. G., Toro J. R., Heppel L. A. Receptor specific for certain nucleotides stimulates inositol phosphate metabolism and Ca2+ fluxes in A431 cells. J Cell Physiol. 1989 Dec;141(3):606–617. doi: 10.1002/jcp.1041410320. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez F. A., Bonapace E., Belzer I., Friedberg I., Heppel L. A. Two distinct receptors for ATP can be distinguished in Swiss 3T6 mouse fibroblasts by their desensitization. Biochem Biophys Res Commun. 1989 Oct 31;164(2):706–713. doi: 10.1016/0006-291x(89)91517-9. [DOI] [PubMed] [Google Scholar]
  14. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Harden T. K., Boyer J. L., Nicholas R. A. P2-purinergic receptors: subtype-associated signaling responses and structure. Annu Rev Pharmacol Toxicol. 1995;35:541–579. doi: 10.1146/annurev.pa.35.040195.002545. [DOI] [PubMed] [Google Scholar]
  17. Huang N., Wang D. J., Heppel L. A. Extracellular ATP is a mitogen for 3T3, 3T6, and A431 cells and acts synergistically with other growth factors. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7904–7908. doi: 10.1073/pnas.86.20.7904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ishikawa S., Kawasumi M., Kusaka I., Komatsu N., Iwao N., Saito T. Extracellular ATP promotes cellular growth of glomerular mesangial cells mediated via phospholipase C. Biochem Biophys Res Commun. 1994 Jul 15;202(1):234–240. doi: 10.1006/bbrc.1994.1917. [DOI] [PubMed] [Google Scholar]
  19. Kaplan A. D., Reimer W. J., Feldman R. D., Dixon S. J. Extracellular nucleotides potentiate the cytosolic Ca2+, but not cyclic adenosine 3', 5'-monophosphate response to parathyroid hormone in rat osteoblastic cells. Endocrinology. 1995 Apr;136(4):1674–1685. doi: 10.1210/endo.136.4.7895678. [DOI] [PubMed] [Google Scholar]
  20. Lasso de la Vega M. C., Terradez P., Obrador E., Navarro J., Pellicer J. A., Estrela J. M. Inhibition of cancer growth and selective glutathione depletion in Ehrlich tumour cells in vivo by extracellular ATP. Biochem J. 1994 Feb 15;298(Pt 1):99–105. doi: 10.1042/bj2980099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parr C. E., Sullivan D. M., Paradiso A. M., Lazarowski E. R., Burch L. H., Olsen J. C., Erb L., Weisman G. A., Boucher R. C., Turner J. T. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3275–3279. doi: 10.1073/pnas.91.8.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Popper L. D., Batra S. Calcium mobilization and cell proliferation activated by extracellular ATP in human ovarian tumour cells. Cell Calcium. 1993 Mar;14(3):209–218. doi: 10.1016/0143-4160(93)90068-h. [DOI] [PubMed] [Google Scholar]
  24. Rapaport E. Mechanisms of anticancer activities of adenine nucleotides in tumor-bearing hosts. Ann N Y Acad Sci. 1990;603:142–150. doi: 10.1111/j.1749-6632.1990.tb37668.x. [DOI] [PubMed] [Google Scholar]
  25. Schulze-Lohoff E., Zanner S., Ogilvie A., Sterzel R. B. Extracellular ATP stimulates proliferation of cultured mesangial cells via P2-purinergic receptors. Am J Physiol. 1992 Sep;263(3 Pt 2):F374–F383. doi: 10.1152/ajprenal.1992.263.3.F374. [DOI] [PubMed] [Google Scholar]
  26. Spungin B., Friedberg I. Growth inhibition of breast cancer cells induced by exogenous ATP. J Cell Physiol. 1993 Dec;157(3):502–508. doi: 10.1002/jcp.1041570309. [DOI] [PubMed] [Google Scholar]
  27. Torres-Márquez M. E., Mejia S., Moreno-Sánchez R. Modulation of the ATP induced [Ca2+]c increase in AS-30D hepatoma cells. Int J Biochem. 1993 Aug;25(8):1109–1114. doi: 10.1016/0020-711x(93)90588-6. [DOI] [PubMed] [Google Scholar]
  28. Vandewalle B., Hornez L., Revillion F., Lefebvre J. Effect of extracellular ATP on breast tumor cell growth, implication of intracellular calcium. Cancer Lett. 1994 Sep 30;85(1):47–54. doi: 10.1016/0304-3835(94)90237-2. [DOI] [PubMed] [Google Scholar]
  29. Vargas S. J., Gillespie M. T., Powell G. J., Southby J., Danks J. A., Moseley J. M., Martin T. J. Localization of parathyroid hormone-related protein mRNA expression in breast cancer and metastatic lesions by in situ hybridization. J Bone Miner Res. 1992 Aug;7(8):971–979. doi: 10.1002/jbmr.5650070814. [DOI] [PubMed] [Google Scholar]
  30. Webb T. E., Simon J., Krishek B. J., Bateson A. N., Smart T. G., King B. F., Burnstock G., Barnard E. A. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 1993 Jun 14;324(2):219–225. doi: 10.1016/0014-5793(93)81397-i. [DOI] [PubMed] [Google Scholar]
  31. Weisman G. A., Lustig K. D., Lane E., Huang N. N., Belzer I., Friedberg I. Growth inhibition of transformed mouse fibroblasts by adenine nucleotides occurs via generation of extracellular adenosine. J Biol Chem. 1988 Sep 5;263(25):12367–12372. [PubMed] [Google Scholar]
  32. el-Moatassim C., Dornand J., Mani J. C. Extracellular ATP and cell signalling. Biochim Biophys Acta. 1992 Feb 19;1134(1):31–45. doi: 10.1016/0167-4889(92)90025-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES