Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 May;134(2):434–439. doi: 10.1128/jb.134.2.434-439.1978

Evidence linking penicillinase formation and secretion to lipid metabolism in Bacillus licheniformis.

Y Fishman, S Rottem, N Citri
PMCID: PMC222270  PMID: 659359

Abstract

The formation of penicillinase by cultures of Bacillus licheniformis was preferentially suppressed by cerulenin, an antibiotic known to specifically inhibit fatty acid synthesis in microorganisms. The effect was studied at cerulenin concentrations that had almost no effect on the rate of cell growth and overall protein synthesis, but that reduced the rate of [14C]acetate incorporation (by 50 to 70%), indicating partial inhibition of lipid synthesis. The levels of both the released enzyme (exopenicillinase) and its cell-bound precursor were reduced to the same extent (70% to 80%). Enzyme formation was gradually resumed after the removal of cerulenin or the addition of a mixture of fatty acids prepared from lipids extracted from B. licheniformis. Reversal was less effective as the time interval between treatment with cerulenin and addition of fatty acids increased. We conclude that de novo synthesis of fatty acids is required for the formation of both the membrane-bound and extracellular penicillinase. Suppression of the membrane-bound enzyme is a likely consequence of the altered membrane (decreased lipid-to-lipid ratio and increased density) seen in cerulenin-treated preparations. The corresponding suppression of exopenicillinase is consistent with the view that it is derived from the membrane-bound form. A mechanism linking the general class of exportable proteins to specific aspects of lipid synthesis is discussed.

Full text

PDF
434

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyappa P. S., Lampen J. O. Penicillinase-releasing protease of Bacillus licheniformis 749 Specificity for hydroxyamino acids. J Biol Chem. 1977 Mar 10;252(5):1745–1747. [PubMed] [Google Scholar]
  2. Altenbern R. A. Extreme sensitivity of staphylococcal enterotoxin B and C production to inhibition by cerulenin. Antimicrob Agents Chemother. 1977 May;11(5):906–908. doi: 10.1128/aac.11.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beacham I. R., Taylor N. S., Youell M. Enzyme secretion in Escherichia coli: synthesis of alkaline phosphatase and acid hexose phosphatase in the absence of phospholipid synthesis. J Bacteriol. 1976 Nov;128(2):522–527. doi: 10.1128/jb.128.2.522-527.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bettinger G. E., Lampen J. O. Further evidence for a partially folded intermediate in penicillinase secretion by Bacillus licheniformis. J Bacteriol. 1975 Jan;121(1):83–90. doi: 10.1128/jb.121.1.83-90.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CITRI N. DETERMINATION OF PENICILLINASE ACTIVITY. Methods Med Res. 1964;10:221–232. [PubMed] [Google Scholar]
  6. Cancedda R., Schlesinger M. J. Localization of polyribosomes containing alkaline phosphatase nascent polypeptides on membranes of Escherichia coli. J Bacteriol. 1974 Jan;117(1):290–301. doi: 10.1128/jb.117.1.290-301.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  8. Dancer B. N., Lampen J. O. In vitro synthesis of hydrophobic penicillinase in extracts of Bacillus licheniforms 749/C. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1357–1364. doi: 10.1016/0006-291x(75)90509-4. [DOI] [PubMed] [Google Scholar]
  9. Devillers-Thiery A., Kindt T., Scheele G., Blobel G. Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5016–5020. doi: 10.1073/pnas.72.12.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KLAUSMEIER R. E., STRAWINSKI R. J. Microbial oxidation of naphthalene. I. Factors concerning salicylate accumulation. J Bacteriol. 1957 Apr;73(4):461–464. doi: 10.1128/jb.73.4.461-464.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Konings W. N., Bisschop A., Veenhuis M., Vermeulen C. A. New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure. J Bacteriol. 1973 Dec;116(3):1456–1465. doi: 10.1128/jb.116.3.1456-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  15. Panos C., Rottem S. Incorporation and elongation of fatty acid isomers by Mycoplasma laidlawii A. Biochemistry. 1970 Jan 20;9(2):407–412. doi: 10.1021/bi00804a030. [DOI] [PubMed] [Google Scholar]
  16. Randall L. L., Hardy S. J. Synthesis of exported proteins by membrane-bound polysomes from Escherichia coli. Eur J Biochem. 1977 May 2;75(1):43–53. doi: 10.1111/j.1432-1033.1977.tb11502.x. [DOI] [PubMed] [Google Scholar]
  17. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rottem S., Greenberg A. S. Changes in composition, biosynthesis, and physical state of membrane lipids occurring upon aging of Mycoplasma hominis cultures. J Bacteriol. 1975 Feb;121(2):631–639. doi: 10.1128/jb.121.2.631-639.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rottem S., Razin S. Membrane lipids of Mycoplasma hominis. J Bacteriol. 1973 Feb;113(2):565–571. doi: 10.1128/jb.113.2.565-571.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rottem S., Stein O., Razin S. Reassembly of Mycoplasma membranes disaggregated by detergents. Arch Biochem Biophys. 1968 Apr;125(1):46–56. doi: 10.1016/0003-9861(68)90637-1. [DOI] [PubMed] [Google Scholar]
  21. Smith W. P., Tai P. C., Thompson R. C., Davis B. D. Extracellular labeling of nascent polypeptides traversing the membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2830–2834. doi: 10.1073/pnas.74.7.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamamoto S., Lampen J. O. Membrane penicillinase of Bacillus licheniformis 749/C:sequence and possible repeated tetrapeptide structure of the phospholipopeptide region. Proc Natl Acad Sci U S A. 1976 May;73(5):1457–1461. doi: 10.1073/pnas.73.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES