Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;75(7):1014–1020. doi: 10.1038/bjc.1997.174

A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice.

J K Jackson 1, W Min 1, T F Cruz 1, S Cindric 1, L Arsenault 1, D D Von Hoff 1, D Degan 1, W L Hunter 1, H M Burt 1
PMCID: PMC2222752  PMID: 9083337

Abstract

Using vanadyl sulphate, sodium orthovanadate or bis(maltolato)oxovanadium (BMOV), Cruz TF, Morgan A, Min W (1995, Mol Cell Biochem 153: 161-166) have recently demonstrated the antineoplastic effects of vanadium in mice. In this study, the antineoplastic effects of BMOV against human tumour cell lines was confirmed, and this effect was shown to depend on the prolonged exposure of the cells to the drug. We have investigated a polymeric drug delivery system for the sustained delivery of BMOV as an antineoplastic agent in mice. The objective was to design and evaluate an injectable polymer-BMOV paste that would act as a drug implant for the slow but sustained release of BMOV in the mice. In vitro studies showed that the biodegradable polymer poly (Ghlr epsilon epsilon-caprolactone) (PCL) released BMOV in a sustained manner with rates of drug release increasing with increased loading of the drug in the polymer. In vivo studies showed that PCL-BMOV paste implants produced a concentration-dependent inhibition of MDAY-D2 tumour growth via systemic drug delivery. Further in vivo studies showed that 5% BMOV-loaded PCL (containing 20% methoxypolyethylene glycol) was effective in preventing tumour regrowth of resected RIF tumour masses in mice when the PCL-BMOV paste was applied to the resected site for localized drug delivery. The results confirm the potential of vanadium as an antineoplastic agent and show that the injectable PCL-BMOV formulation releases a chemotherapeutic dose of vanadium for the systemic treatment of whole tumours as well as the localized treatment of resected RIF tumours.

Full text

PDF
1014

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arteaga C. L., Forseth B. J., Clark G. M., Von Hoff D. D. A radiometric method for evaluation of chemotherapy sensitivity: results of screening a panel of human breast cancer cell lines. Cancer Res. 1987 Dec 1;47(23):6248–6253. [PubMed] [Google Scholar]
  2. Bishayee A., Chatterjee M. Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. Br J Cancer. 1995 Jun;71(6):1214–1220. doi: 10.1038/bjc.1995.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpenter G. Vanadate, epidermal growth factor and the stimulation of DNA synthesis. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1115–1121. doi: 10.1016/s0006-291x(81)80127-1. [DOI] [PubMed] [Google Scholar]
  4. Chakraborty A., Ghosh R., Roy K., Ghosh S., Chowdhury P., Chatterjee M. Vanadium: a modifier of drug-metabolizing enzyme patterns and its critical role in cellular proliferation in transplantable murine lymphoma. Oncology. 1995 Jul-Aug;52(4):310–314. doi: 10.1159/000227480. [DOI] [PubMed] [Google Scholar]
  5. Cruz T. F., Morgan A., Min W. In vitro and in vivo antineoplastic effects of orthovanadate. Mol Cell Biochem. 1995 Dec 6;153(1-2):161–166. doi: 10.1007/BF01075933. [DOI] [PubMed] [Google Scholar]
  6. Hanauske U., Hanauske A. R., Clark G. M., Tsen D., Buchok J., von Hoff D. D. A new in vitro screening system for anticancer drugs for the treatment of non-small cell lung cancer. Sel Cancer Ther. 1989;5(3):97–111. doi: 10.1089/sct.1989.5.97. [DOI] [PubMed] [Google Scholar]
  7. Harris W. R., Friedman S. B., Silberman D. Behavior of vanadate and vanadyl ion in canine blood. J Inorg Biochem. 1984 Feb;20(2):157–169. doi: 10.1016/0162-0134(84)80015-x. [DOI] [PubMed] [Google Scholar]
  8. Jandhyala B. S., Hom G. J. Minireview: physiological and pharmacological properties of vanadium. Life Sci. 1983 Oct 3;33(14):1325–1340. doi: 10.1016/0024-3205(83)90816-0. [DOI] [PubMed] [Google Scholar]
  9. Kingsnorth A. N., LaMuraglia G. M., Ross J. S., Malt R. A. Vanadate supplements and 1,2-dimethylhydrazine induced colon cancer in mice: increased thymidine incorporation without enhanced carcinogenesis. Br J Cancer. 1986 May;53(5):683–686. doi: 10.1038/bjc.1986.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Köpf-Maier P., Wagner W., Köpf H. In vitro cell growth inhibition by metallocene dichlorides. Cancer Chemother Pharmacol. 1981;5(4):237–241. doi: 10.1007/BF00434391. [DOI] [PubMed] [Google Scholar]
  11. McNeill J. H., Yuen V. G., Hoveyda H. R., Orvig C. Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem. 1992 Apr 17;35(8):1489–1491. doi: 10.1021/jm00086a020. [DOI] [PubMed] [Google Scholar]
  12. Merritt K., Margevicius R. W., Brown S. A. Storage and elimination of titanium, aluminum, and vanadium salts, in vivo. J Biomed Mater Res. 1992 Nov;26(11):1503–1515. doi: 10.1002/jbm.820261109. [DOI] [PubMed] [Google Scholar]
  13. Montesano R., Pepper M. S., Belin D., Vassalli J. D., Orci L. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol. 1988 Mar;134(3):460–466. doi: 10.1002/jcp.1041340318. [DOI] [PubMed] [Google Scholar]
  14. Sabbioni E., Pozzi G., Devos S., Pintar A., Casella L., Fischbach M. The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV). Carcinogenesis. 1993 Dec;14(12):2565–2568. doi: 10.1093/carcin/14.12.2565. [DOI] [PubMed] [Google Scholar]
  15. Sardar S., Ghosh R., Mondal A., Chatterjee M. Protective role of vanadium in the survival of hosts during the growth of a transplantable murine lymphoma and its profound effects on the rates and patterns of biotransformation. Neoplasma. 1993;40(1):27–30. [PubMed] [Google Scholar]
  16. Scheithauer W., Clark G. M., Moyer M. P., Von Hoff D. D. New screening system for selection of anticancer drugs for treatment of human colorectal cancer. Cancer Res. 1986 Jun;46(6):2703–2708. [PubMed] [Google Scholar]
  17. Stern A., Yin X., Tsang S. S., Davison A., Moon J. Vanadium as a modulator of cellular regulatory cascades and oncogene expression. Biochem Cell Biol. 1993 Mar-Apr;71(3-4):103–112. doi: 10.1139/o93-018. [DOI] [PubMed] [Google Scholar]
  18. Swarup G., Cohen S., Garbers D. L. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. 1982 Aug;107(3):1104–1109. doi: 10.1016/0006-291x(82)90635-0. [DOI] [PubMed] [Google Scholar]
  19. Thompson H. J., Chasteen N. D., Meeker L. D. Dietary vanadyl(IV) sulfate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis. 1984 Jun;5(6):849–851. doi: 10.1093/carcin/5.6.849. [DOI] [PubMed] [Google Scholar]
  20. Von Hoff D. D., Forseth B., Warfel L. E. Use of a radiometric system to screen for antineoplastic agents: correlation with a human tumor cloning system. Cancer Res. 1985 Sep;45(9):4032–4038. [PubMed] [Google Scholar]
  21. Winternitz C. I., Jackson J. K., Oktaba A. M., Burt H. M. Development of a polymeric surgical paste formulation for taxol. Pharm Res. 1996 Mar;13(3):368–375. doi: 10.1023/a:1016032207246. [DOI] [PubMed] [Google Scholar]
  22. Yuen V. G., Orvig C., McNeill J. H. Glucose-lowering effects of a new organic vanadium complex, bis(maltolato)oxovanadium(IV). Can J Physiol Pharmacol. 1993 Mar-Apr;71(3-4):263–269. doi: 10.1139/y93-041. [DOI] [PubMed] [Google Scholar]
  23. Yuen V. G., Orvig C., Thompson K. H., McNeill J. H. Improvement in cardiac dysfunction in streptozotocin-induced diabetic rats following chronic oral administration of bis(maltolato)oxovanadium(IV). Can J Physiol Pharmacol. 1993 Mar-Apr;71(3-4):270–276. doi: 10.1139/y93-042. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES