Abstract
Two riboflavin synthase activities (heavy and light) have been observed in earlier studies with Bacillus subtilis. The heavy enzyme is a complex of one molecule of light enzyme (consisting of three alpha subunits) and approximately 60 beta subunits (A. Bacher, R. Bauer, U. Eggers, H. Harders, and H. Schnepple, p. 729--732, in T. P. Singer (ed.), Flavins and Flavoproteins, Elsevier, Amsterdam, 1976). The formation of alpha and beta subunits is coordinately controlled. Mutants apparently deficient in beta subunits were isolated as riboflavin requires after mutagenesis of B. subtilis with ICR 191. The mutants could grow with diacetyl instead of riboflavin. Growth with diacetyl was associated with the accumulation of substantial amounts of the riboflavin precursor, 6,7-dimethyl-8-(D-ribityl)lumazine. It follows that the mutants are deficient in an enzyme activity required for the formation of the lumazine from the pyrimidine precursor. We conclude that heavy riboflavin synthase is a bifunctional enzyme. The riboflavin synthase activity is mediated by the alpha subunits, whereas the beta subunits are necessary for an earlier biosynthetic step.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. N., al-Khalidi U. A. The precursors of the xylene ring in riboflavine. Biochem J. 1966 Jan;98(1):182–188. doi: 10.1042/bj0980182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alworth W. L., Dove M. F., Baker H. N. Biosynthesis of the dimethylbenzene moiety of riboflavin and dimethylbenzimidazole: evidence for the involvement of C-1 of a pentose as a precursor. Biochemistry. 1977 Feb 8;16(3):526–531. doi: 10.1021/bi00622a029. [DOI] [PubMed] [Google Scholar]
- Bacher A., Eggers U., Lingens F. Genetic control of riboflavin synthetase in Bacillus subtilis. Arch Mikrobiol. 1973;89(1):73–77. doi: 10.1007/BF00409401. [DOI] [PubMed] [Google Scholar]
- Bacher A., Lingens F. Biosynthesis of riboflavin. Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino)pyrimidine in a riboflavin auxotroph. J Biol Chem. 1970 Sep 25;245(18):4647–4652. [PubMed] [Google Scholar]
- Bacher A., Lingens F. Biosynthesis of riboflavin. Formation of 6-hydroxy-2,4,5-triaminopyrimidine in rib 7 mutants of Saccharomyces cerevisiae. J Biol Chem. 1971 Nov 25;246(22):7018–7022. [PubMed] [Google Scholar]
- Bacher A., Mailänder B. Biosynthesis of riboflavin. The structure of the purine precursor. J Biol Chem. 1973 Sep 10;248(17):6227–6231. [PubMed] [Google Scholar]
- Baugh C. M., Krumdieck C. L. Biosynthesis of riboflavine in Corynebacterium species: the purine precursor. J Bacteriol. 1969 Jun;98(3):1114–1119. doi: 10.1128/jb.98.3.1114-1119.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryn K., Stormer F. C. Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway. Biochim Biophys Acta. 1976 Mar 25;428(1):257–259. doi: 10.1016/0304-4165(76)90127-6. [DOI] [PubMed] [Google Scholar]
- Demain A. L. Riboflavin oversynthesis. Annu Rev Microbiol. 1972;26:369–388. doi: 10.1146/annurev.mi.26.100172.002101. [DOI] [PubMed] [Google Scholar]
- Foor F., Brown G. M. Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J Biol Chem. 1975 May 10;250(9):3545–3551. [PubMed] [Google Scholar]
- GOODWIN T. W., HORTON A. A. Biosynthesis of riboflavin in cell-free systems. Nature. 1961 Aug 19;191:772–774. doi: 10.1038/191772a0. [DOI] [PubMed] [Google Scholar]
- KATAGIRI H., TAKEDA I., IMAI K. Synthesis of riboflavin by microorganisms. VII. The enzymic riboflavin synthesis from 4-N-ribitylamino-5-aminouracil. J Vitaminol (Kyoto) 1959 Dec 10;5:287–297. doi: 10.5925/jnsv1954.5.287. [DOI] [PubMed] [Google Scholar]
- Lingens F., Oltmanns O., Bacher A. Uber Zwischenprodukte der Riboflavin-Biosynthese bei Saccharomyces cerevisiae. Z Naturforsch B. 1967 Jul;22(7):755–758. [PubMed] [Google Scholar]
- Mailänder B., Bacher A. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain. J Biol Chem. 1976 Jun 25;251(12):3623–3628. [PubMed] [Google Scholar]
- OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. II. Prog Allergy. 1962;6:30–154. doi: 10.1159/000313795. [DOI] [PubMed] [Google Scholar]
- Oeschger N. S., Hartman P. E. ICR-induced frameshift mutations in the histidine operon of Salmonella. J Bacteriol. 1970 Feb;101(2):490–504. doi: 10.1128/jb.101.2.490-504.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oltmanns O., Bacher A. Biosynthesis of riboflavine in Saccharomyces cerevisiae: the role of genes rib 1 and rib 7 . J Bacteriol. 1972 Jun;110(3):818–822. doi: 10.1128/jb.110.3.818-822.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oltmanns O., Bacher A., Lingens F., Zimmermann F. K. Biochemical and genetic classification of riboflavine deficient mutants of Saccharomyces cerevisiae. Mol Gen Genet. 1969;105(4):306–313. doi: 10.1007/BF00277585. [DOI] [PubMed] [Google Scholar]
- Plaut G. W., Beach R. L., Aogaichi T. Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry. 1970 Feb 17;9(4):771–785. doi: 10.1021/bi00806a010. [DOI] [PubMed] [Google Scholar]
- Plaut G. W., Smith C. M., Alworth W. L. Biosynthesis of water-soluble vitamins. Annu Rev Biochem. 1974;43(0):899–922. doi: 10.1146/annurev.bi.43.070174.004343. [DOI] [PubMed] [Google Scholar]
- Pomerantseva M. D., Rafailov A. M. Mutagennyi effekt radiatsii u myshei, podvergshikhsia gamma-oblucheniiu v émbrional'nyi period. Soobshchenie III. Chastota mozaikov po okraske shersti sredi geterozigotnykh po retsessivnym mutatsiiam myshei, podvergshikhsia oblucheniiu v raznye sroki émbriogeneza. Genetika. 1976;12(11):83–86. [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIL-MALHERBE H., BONE A. D. The association of adrenaline and noradrenaline with blood platelets. Biochem J. 1958 Sep;70(1):14–22. doi: 10.1042/bj0700014. [DOI] [PMC free article] [PubMed] [Google Scholar]

