Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;75(8):1105–1110. doi: 10.1038/bjc.1997.191

Loss of heterozygosity at the 5,10-methylenetetrahydrofolate reductase locus in human ovarian carcinomas.

A Viel 1, L Dall'Agnese 1, F Simone 1, V Canzonieri 1, E Capozzi 1, M C Visentin 1, R Valle 1, M Boiocchi 1
PMCID: PMC2222800  PMID: 9099956

Abstract

The high-affinity folate-binding protein (FBP) is primarily involved in the uptake of the 5-methyltetrahydrofolate, and its expression may be physiologically regulated by the intracellular folate content. The overexpression of FBP on the cell surface of ovarian carcinoma cells may be responsible for an increased folate uptake. We tested the hypothesis of the existence of a defect in the 5, 10-methylenetetrahydrofolate reductase (MTHFR) in ovarian tumours that could cause reduced intracellular regeneration of the 5-methyltetrahydrofolate and induce increased FBP expression. No sequence mutations were found in the MTHFR gene, but allelic deletions of this gene were frequently detected in ovarian tumours (59%). Chromosomal losses appeared to be confined to the 1p36.3 region to which the MTHFR gene maps. Although it cannot be stated that MTHFR is the target gene of the chromosomal loss involving the 1p36.3 region, a correlation between loss of heterozygosity at this locus and decrease in MTHFR activity was shown, suggesting a role of these allelic deletions in generating a biochemical defect in folate metabolism. Further studies are needed to assess further the relationship between MTHFR and FBP overexpression, but the demonstration of the alteration of a key metabolic enzyme of the folate cycle in a subset of human ovarian tumours is in accordance with the hypothesis of an altered folate metabolism in these neoplasias and might be exploited for therapeutic purposes.

Full text

PDF
1105

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antony A. C. The biological chemistry of folate receptors. Blood. 1992 Jun 1;79(11):2807–2820. [PubMed] [Google Scholar]
  2. Campbell I. G., Jones T. A., Foulkes W. D., Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991 Oct 1;51(19):5329–5338. [PubMed] [Google Scholar]
  3. Chenevix-Trench G., Leary J., Kerr J., Michel J., Kefford R., Hurst T., Parsons P. G., Friedlander M., Khoo S. K. Frequent loss of heterozygosity on chromosome 18 in ovarian adenocarcinoma which does not always include the DCC locus. Oncogene. 1992 Jun;7(6):1059–1065. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Cliby W., Ritland S., Hartmann L., Dodson M., Halling K. C., Keeney G., Podratz K. C., Jenkins R. B. Human epithelial ovarian cancer allelotype. Cancer Res. 1993 May 15;53(10 Suppl):2393–2398. [PubMed] [Google Scholar]
  6. Coney L. R., Tomassetti A., Carayannopoulos L., Frasca V., Kamen B. A., Colnaghi M. I., Zurawski V. R., Jr Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 1991 Nov 15;51(22):6125–6132. [PubMed] [Google Scholar]
  7. Engelstein M., Hudson T. J., Lane J. M., Lee M. K., Leverone B., Landes G. M., Peltonen L., Weber J. L., Dracopoli N. C. A PCR-based linkage map of human chromosome 1. Genomics. 1993 Feb;15(2):251–258. doi: 10.1006/geno.1993.1054. [DOI] [PubMed] [Google Scholar]
  8. Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., Boers G. J., den Heijer M., Kluijtmans L. A., van den Heuvel L. P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995 May;10(1):111–113. doi: 10.1038/ng0595-111. [DOI] [PubMed] [Google Scholar]
  9. Goseki N., Yamazaki S., Endo M., Onodera T., Kosaki G., Hibino Y., Kuwahata T. Antitumor effect of methionine-depleting total parenteral nutrition with doxorubicin administration on Yoshida sarcoma-bearing rats. Cancer. 1992 Apr 1;69(7):1865–1872. doi: 10.1002/1097-0142(19920401)69:7<1865::aid-cncr2820690732>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  10. Goyette P., Sumner J. S., Milos R., Duncan A. M., Rosenblatt D. S., Matthews R. G., Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994 Jun;7(2):195–200. doi: 10.1038/ng0694-195. [DOI] [PubMed] [Google Scholar]
  11. Guo H., Lishko V. K., Herrera H., Groce A., Kubota T., Hoffman R. M. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res. 1993 Dec 1;53(23):5676–5679. [PubMed] [Google Scholar]
  12. Henderson G. B. Folate-binding proteins. Annu Rev Nutr. 1990;10:319–335. doi: 10.1146/annurev.nu.10.070190.001535. [DOI] [PubMed] [Google Scholar]
  13. Hoffman R. M. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta. 1984;738(1-2):49–87. doi: 10.1016/0304-419x(84)90019-2. [DOI] [PubMed] [Google Scholar]
  14. Hsu S. M., Raine L., Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981 May;75(5):734–738. doi: 10.1093/ajcp/75.5.734. [DOI] [PubMed] [Google Scholar]
  15. Jacobsen S. J., North J. A., Rao N. A., Mangum J. H. 5-methyltetrahydrofolate: synthesis and utilization in normal and SV40-transformed BHK-21 cells. Biochem Biophys Res Commun. 1977 May 9;76(1):46–53. doi: 10.1016/0006-291x(77)91666-7. [DOI] [PubMed] [Google Scholar]
  16. Jenkins R. B., Bartelt D., Jr, Stalboerger P., Persons D., Dahl R. J., Podratz K., Keeney G., Hartmann L. Cytogenetic studies of epithelial ovarian carcinoma. Cancer Genet Cytogenet. 1993 Nov;71(1):76–86. doi: 10.1016/0165-4608(93)90205-z. [DOI] [PubMed] [Google Scholar]
  17. Kamen B. A., Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5983–5987. doi: 10.1073/pnas.83.16.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kane M. A., Elwood P. C., Portillo R. M., Antony A. C., Najfeld V., Finley A., Waxman S., Kolhouse J. F. Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human cells. J Clin Invest. 1988 May;81(5):1398–1406. doi: 10.1172/JCI113469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsue H., Rothberg K. G., Takashima A., Kamen B. A., Anderson R. G., Lacey S. W. Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6006–6009. doi: 10.1073/pnas.89.13.6006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matthews R. G. Methylenetetrahydrofolate reductase from pig liver. Methods Enzymol. 1986;122:372–381. doi: 10.1016/0076-6879(86)22196-5. [DOI] [PubMed] [Google Scholar]
  21. Miotti S., Canevari S., Ménard S., Mezzanzanica D., Porro G., Pupa S. M., Regazzoni M., Tagliabue E., Colnaghi M. I. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer. 1987 Mar 15;39(3):297–303. doi: 10.1002/ijc.2910390306. [DOI] [PubMed] [Google Scholar]
  22. Miotti S., Facheris P., Tomassetti A., Bottero F., Bottini C., Ottone F., Colnaghi M. I., Bunni M. A., Priest D. G., Canevari S. Growth of ovarian-carcinoma cell lines at physiological folate concentration: effect on folate-binding protein expression in vitro and in vivo. Int J Cancer. 1995 Nov 3;63(3):395–401. doi: 10.1002/ijc.2910630316. [DOI] [PubMed] [Google Scholar]
  23. Mäkelä T. P., Hellsten E., Vesa J., Alitalo K., Peltonen L. An Alu variable polyA repeat polymorphism upstream of L-myc at 1p32. Hum Mol Genet. 1992 Jun;1(3):217–217. doi: 10.1093/hmg/1.3.217-a. [DOI] [PubMed] [Google Scholar]
  24. Osborne R. J., Leech V. Polymerase chain reaction allelotyping of human ovarian cancer. Br J Cancer. 1994 Mar;69(3):429–438. doi: 10.1038/bjc.1994.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patel M. S., Mankoo B. S., Brickell P. M. A polymorphic microsatellite repeat is located close to the promoter region of the c-fgr proto-oncogene (FGR) at chromosome 1p36.2-p36.1. Hum Mol Genet. 1992 Apr;1(1):65–65. doi: 10.1093/hmg/1.1.65-a. [DOI] [PubMed] [Google Scholar]
  26. Ross J. F., Chaudhuri P. K., Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994 May 1;73(9):2432–2443. doi: 10.1002/1097-0142(19940501)73:9<2432::aid-cncr2820730929>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  27. Sato T., Saito H., Morita R., Koi S., Lee J. H., Nakamura Y. Allelotype of human ovarian cancer. Cancer Res. 1991 Oct 1;51(19):5118–5122. [PubMed] [Google Scholar]
  28. Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm. 1989;45:263–335. doi: 10.1016/s0083-6729(08)60397-0. [DOI] [PubMed] [Google Scholar]
  29. Thompson F. H., Emerson J., Alberts D., Liu Y., Guan X. Y., Burgess A., Fox S., Taetle R., Weinstein R., Makar R. Clonal chromosome abnormalities in 54 cases of ovarian carcinoma. Cancer Genet Cytogenet. 1994 Mar;73(1):33–45. doi: 10.1016/0165-4608(94)90179-1. [DOI] [PubMed] [Google Scholar]
  30. Veggian R., Fasolato S., Ménard S., Minucci D., Pizzetti P., Regazzoni M., Tagliabue E., Colnaghi M. I. Immunohistochemical reactivity of a monoclonal antibody prepared against human ovarian carcinoma on normal and pathological female genital tissues. Tumori. 1989 Oct 31;75(5):510–513. doi: 10.1177/030089168907500524. [DOI] [PubMed] [Google Scholar]
  31. Viel A., Dall'Agnese L., Canzonieri V., Sopracordevole F., Capozzi E., Carbone A., Visentin M. C., Boiocchi M. Suppressive role of the metastasis-related nm23-H1 gene in human ovarian carcinomas: association of high messenger RNA expression with lack of lymph node metastasis. Cancer Res. 1995 Jun 15;55(12):2645–2650. [PubMed] [Google Scholar]
  32. Viel A., Giannini F., Capozzi E., Canzonieri V., Scarabelli C., Gloghini A., Boiocchi M. Molecular mechanisms possibly affecting WT1 function in human ovarian tumors. Int J Cancer. 1994 May 15;57(4):515–521. doi: 10.1002/ijc.2910570413. [DOI] [PubMed] [Google Scholar]
  33. Viel A., Maestro R., Toffoli G., Grion G., Boiocchi M. c-myc overexpression is a tumor-specific phenomenon in a subset of human colorectal carcinomas. J Cancer Res Clin Oncol. 1990;116(3):288–294. doi: 10.1007/BF01612905. [DOI] [PubMed] [Google Scholar]
  34. Yang-Feng T. L., Han H., Chen K. C., Li S. B., Claus E. B., Carcangiu M. L., Chambers S. K., Chambers J. T., Schwartz P. E. Allelic loss in ovarian cancer. Int J Cancer. 1993 Jun 19;54(4):546–551. doi: 10.1002/ijc.2910540405. [DOI] [PubMed] [Google Scholar]
  35. Zhou J., Kang S. S., Wong P. W., Fournier B., Rozen R. Purification and characterization of methylenetetrahydrofolate reductase from human cadaver liver. Biochem Med Metab Biol. 1990 Jun;43(3):234–242. doi: 10.1016/0885-4505(90)90029-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES