Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 May;134(2):546–554. doi: 10.1128/jb.134.2.546-554.1978

Glutamate-induced uptake of proline by Streptomyces antibioticus.

W S May Jr, J V Formica
PMCID: PMC222285  PMID: 26658

Abstract

Streptomyces antibioticus possesses an energy-dependent, carrier mediated transport system for the uptake of L-glutamate and L-proline. Amino acid transport was found to have a temperature optimum of 35 degrees C and a pH optimum from 7.0 to 8.0 for glutamate and 6.5 to 7.5 for proline uptake. Uptake did not depend upon Mg2+, Ca2+, Zn2+, Na+, or Fe2+ ions. Reversible p-hydroxymercuribenzoate inhibition of uptake indicated the involvement of an active sulfhydryl group. L-Glutamate uptake was mediated by a glutamate-inducible, nonspecific transport system, which was extremely stable and was not subject to substrate inhibition by L-proline. On the other hand, L-proline transport was mediated by at least two systems. The L-glutamate-inducible nonspecific system can account for uptake of proline by the mycelium grown in glutamate. In addition, a proline-specific, constitutive transport system was found to be present in the mycelium grown in organic and inorganic nitrogen sources other than L-glutamate. Shift experiments revealed that proline transport is not as stable as glutamate transport when the glutamate-inducible nonspecific system is utilized.

Full text

PDF
546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
  2. Breiman A., Barash I. Characterization of L-asparagine transport systems in Stemphylium botryosum. J Bacteriol. 1976 Sep;127(3):1127–1135. doi: 10.1128/jb.127.3.1127-1135.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Formica J. V., Apple M. A. Production, isolation, and properties of azetomycins. Antimicrob Agents Chemother. 1976 Feb;9(2):214–221. doi: 10.1128/aac.9.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Formica J. V., Katz E. Isolation, purification, and characterization of pipecolic acid-containing actinomycins, Pip 2, Pip 1 , and Pip 1 . J Biol Chem. 1973 Mar 25;248(6):2066–2071. [PubMed] [Google Scholar]
  5. Formica J. V., Shatkin A. J., Katz E. Actinomycin analogues containing pipecolic acid: relationship of structure to biological activity. J Bacteriol. 1968 Jun;95(6):2139–2150. doi: 10.1128/jb.95.6.2139-2150.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gross W., Ring K. Active transport of glutamate in Streptomyces hydrogenans. I. Studies on uptake and pool size, and their interrelationship. Biochim Biophys Acta. 1971 Jun 1;233(3):652–665. doi: 10.1016/0005-2736(71)90165-9. [DOI] [PubMed] [Google Scholar]
  7. Gross W., Ring K., Heinz E. Positive feedback regulation of amino acid transport in Streptomyces hydrogenans. Arch Biochem Biophys. 1970 Mar;137(1):253–261. doi: 10.1016/0003-9861(70)90432-7. [DOI] [PubMed] [Google Scholar]
  8. Halpern Y. S., Even-Shoshan A. Properties of the glutamate transport system in Escherichia coli. J Bacteriol. 1967 Mar;93(3):1009–1016. doi: 10.1128/jb.93.3.1009-1016.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KATZ E. Biogenesis of the actinomycins. Ann N Y Acad Sci. 1960 Oct 5;89:304–322. doi: 10.1111/j.1749-6632.1960.tb20154.x. [DOI] [PubMed] [Google Scholar]
  10. KATZ E., GOSS W. A. Controlled biosynthesis of actinomycin with sarcosine. Biochem J. 1959 Nov;73:458–465. doi: 10.1042/bj0730458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KATZ E., GOSS W. A. Influence of amino-acids of actinomycin biosynthesis. Nature. 1958 Dec 13;182(4650):1668–1669. doi: 10.1038/1821668b0. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Pall M. L. Amino acid transport in Neurospora crassa. II. Properties of a basic amino acid transport system. Biochim Biophys Acta. 1970 Mar 17;203(1):139–149. doi: 10.1016/0005-2736(70)90044-1. [DOI] [PubMed] [Google Scholar]
  14. Ring K., Gross W., Heinz E. Negative feedback regulation of amino acid transport in Streptomyces hydrogenans. Arch Biochem Biophys. 1970 Mar;137(1):243–252. doi: 10.1016/0003-9861(70)90431-5. [DOI] [PubMed] [Google Scholar]
  15. Skye G. E., Segel I. H. Independent regulation of cysteine and cystine transport in Penicillium chrysogenum. Arch Biochem Biophys. 1970 May;138(1):306–318. doi: 10.1016/0003-9861(70)90311-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES