Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jun;134(3):771–777. doi: 10.1128/jb.134.3.771-777.1978

Phospholipid composition of methane-utilizing bacteria.

R A Makula
PMCID: PMC222323  PMID: 96101

Abstract

The phospholipids of Methylococcus capsulatus, Methylosinus trichosporium, La Paz, and OBT were examined in relation to their qualitative and quantitative composition. M. capsulatus exhibited a phospholipid composition consisting of phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and phosphatidyl-choline. The esterified fatty acids were predominantly C16:0 and C16:1. M. trichosporium, La Paz, and OBT exhibited an essentially identical phospholipid composition consisting of phosphatidylmonomethylethanolamine, phosphatidyl-dimethylethanolamine, phosphatidylcholine, and phosphatidylglycerol. Only trace amounts (less than 1%) of cardiolipin were found in these organisms. The major esterified fatty acid in these organisms was C18:1 (87 to 90%). The monounsaturated fatty acids from all four organisms consisted of both cis and trans isomers, each of which contained delta8, delta9, delta10, and delta11 double-bond positional isomers.

Full text

PDF
771

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony C. The biochemistry of methylotrophic micro-organisms. Sci Prog. 1975 Summer;62(246):167–206. [PubMed] [Google Scholar]
  2. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  3. Davies S. L., Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):227–232. doi: 10.1099/00221287-61-2-227. [DOI] [PubMed] [Google Scholar]
  4. Finnerty W. R., Makula R. A. Microbial lipid metabolism. CRC Crit Rev Microbiol. 1975 Oct;4(1):1–40. doi: 10.3109/10408417509105485. [DOI] [PubMed] [Google Scholar]
  5. Fulco A. J. The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J Biol Chem. 1969 Feb 10;244(3):889–895. [PubMed] [Google Scholar]
  6. Fulco A. J. The effect of temperature on the formation of delta 5-unsaturated fatty acids by bacilli. Biochim Biophys Acta. 1967 Dec 5;144(3):701–703. doi: 10.1016/0005-2760(67)90065-3. [DOI] [PubMed] [Google Scholar]
  7. Gibson D. T., Koch J. R., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry. 1968 Jul;7(7):2653–2662. doi: 10.1021/bi00847a031. [DOI] [PubMed] [Google Scholar]
  8. Goldberg I., Jensen A. P. Phospholipid and fatty acid composition of methanol-utilizing bacteria. J Bacteriol. 1977 Apr;130(1):535–537. doi: 10.1128/jb.130.1.535-537.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldfine H. Comparative aspects of bacterial lipids. Adv Microb Physiol. 1972;8:1–58. doi: 10.1016/s0065-2911(08)60187-3. [DOI] [PubMed] [Google Scholar]
  10. Langworthy T. A. Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta. 1977 Apr 26;487(1):37–50. doi: 10.1016/0005-2760(77)90042-x. [DOI] [PubMed] [Google Scholar]
  11. Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: identification of phospholipids. J Bacteriol. 1970 Aug;103(2):348–355. doi: 10.1128/jb.103.2.348-355.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Makula R. A., Finnerty W. R. Phospholipid composition of Desulfovibrio species. J Bacteriol. 1974 Dec;120(3):1279–1283. doi: 10.1128/jb.120.3.1279-1283.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J Bacteriol. 1968 Jun;95(6):2102–2107. doi: 10.1128/jb.95.6.2102-2107.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Modrzakowski M. C., Makula R. A., Finnerty W. R. Metabolism of the alkane analogue n-dioctyl ether by Acinetobacter species. J Bacteriol. 1977 Jul;131(1):92–97. doi: 10.1128/jb.131.1.92-97.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Senff L. M., Wegener W. S., Brooks G. F., Finnerty W. R., Makula R. A. Phospholipid composition and phospholipase A activity of Neisseria gonorrhoeae. J Bacteriol. 1976 Aug;127(2):874–880. doi: 10.1128/jb.127.2.874-880.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Torregrossa R. E., Makula R. A., Finnerty W. R. Characterization of lysocardiolipin from Acinetobacter sp. HO1-N. J Bacteriol. 1977 Aug;131(2):486–492. doi: 10.1128/jb.131.2.486-492.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
  18. Weaver T. L., Patrick M. A., Dugan P. R. Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium. J Bacteriol. 1975 Nov;124(2):602–605. doi: 10.1128/jb.124.2.602-605.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES