Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jun;134(3):844–853. doi: 10.1128/jb.134.3.844-853.1978

Glycogenolytic enzymes in sporulating yeast.

W J Colonna, P T Magee
PMCID: PMC222331  PMID: 350852

Abstract

During meiosis in Saccharomyces cerevisiae, the polysaccharide glycogen is first synthesized and then degraded during the period of spore maturation. We have detected, in sporulating yeast strains, an enzyme activity which is responsible for the glycogen catabolism. The activity was absent in vegetative cells, appeared coincidently with the beginning of glycogenolysis and the appearance of mature ascospores, and increased progressively until spourlation was complete. The specific activity of glycogenolytic enzymes in the intact ascus was about threefold higher than in isolated spores. The glycogenolysis was not due to combinations of phosphorylase plus phosphatase or amylase plus maltase. Nonsporulating cells exhibited litle or no glycogen catabolism and contained only traces of glycogenolytic enzyme, suggesting that the activity is sporulation specific. The partially purified enzyme preparation degraded amylose and glycogen, releasing glucose as the only low-molecular-weight product. Maltotriose was rapidly hydrolyzed; maltose was less susceptible. Alpha-methyl-D-glucoside, isomaltose, and linear alpha-1,6-linked dextran were not attacked. However, the enzyme hydrolyzed alpha-1,6-glucosyl-Schardinger dextrin and increased the beta-amylolysis of beta-amylase-limit dextrin. Thus, the preparation contains alpha-1,4- and alpha-1,6-glucosidase activities. Sephadex G-150 chromatography partially resolved the enzyme into two activities, one of which may be a glucamylase and the other a debranching enzyme.

Full text

PDF
844

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BADIN J., JACKSON C., SCHUBERT M. Improved method for determination of plasma polysaccharides with tryptophan. Proc Soc Exp Biol Med. 1953 Nov;84(2):289–291. [PubMed] [Google Scholar]
  2. Bathgate G. N., Manners D. J. The specificity of yeast alpha-(1--6)-glucosidases. Biochem J. 1968 Apr;107(3):443–445. doi: 10.1042/bj1070443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker J. U., Long T. J., Fischer E. H. Purification and properties of debranching enzyme from dogfish muscle. Biochemistry. 1977 Jan 25;16(2):291–297. doi: 10.1021/bi00621a021. [DOI] [PubMed] [Google Scholar]
  4. Boer P., Steyn-Parvé E. P. Isolation and purification of an acid phosphatase from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta. 1966 Nov 15;128(2):400–402. doi: 10.1016/0926-6593(66)90189-5. [DOI] [PubMed] [Google Scholar]
  5. Chester V. E., Byrne M. J. Carbohydrate composition and UDP-glucose concentration in a normal yeast and a mutant deficient in glycogen. Arch Biochem Biophys. 1968 Sep 20;127(1):556–562. doi: 10.1016/0003-9861(68)90262-2. [DOI] [PubMed] [Google Scholar]
  6. Colonna W. J., Gentile J. M., Magee P. T. Inhibiton by sulfanilamide of sporulation in Saccharomyces cerevisiae. Can J Microbiol. 1977 Jun;23(6):659–671. doi: 10.1139/m77-099. [DOI] [PubMed] [Google Scholar]
  7. Entam M. L., Kanike K., Goldstein M. A., Nelson T. E., Bornet E. P., Futch T. W., Schwartz A. Association of gylcogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem. 1976 May 25;251(10):3140–3146. [PubMed] [Google Scholar]
  8. Esposito M. S., Esposito R. E., Arnaud M., Halvorson H. O. Acetate utilization and macromolecular synthesis during sporulation of yeast. J Bacteriol. 1969 Oct;100(1):180–186. doi: 10.1128/jb.100.1.180-186.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. French D., Pulley A. O., Effenberger J. A., Rougvie M. A., Abdullah M. Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Arch Biochem Biophys. 1965 Jul;111(1):153–160. doi: 10.1016/0003-9861(65)90334-6. [DOI] [PubMed] [Google Scholar]
  10. Gascón S., Lampen J. O. Purification of the internal invertase of yeast. J Biol Chem. 1968 Apr 10;243(7):1567–1572. [PubMed] [Google Scholar]
  11. Gunja-Smith Z., Patil N. B., Smith E. E. Two pools of glycogen in Saccharomyces. J Bacteriol. 1977 May;130(2):818–825. doi: 10.1128/jb.130.2.818-825.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gunja Z. H., Manners D. J., Maung K. Studies on carbohydrate-metabolizing enzymes. 7. Yeast isoamylase. Biochem J. 1961 Nov;81(2):392–398. doi: 10.1042/bj0810392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HOPKINS R. H., KULKA D. The glucamylase and debrancher of S. diastaticus. Arch Biochem Biophys. 1957 Jul;69:45–55. doi: 10.1016/0003-9861(57)90471-x. [DOI] [PubMed] [Google Scholar]
  14. Hopper A. K., Magee P. T., Welch S. K., Friedman M., Hall B. D. Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Aug;119(2):619–628. doi: 10.1128/jb.119.2.619-628.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kane S. M., Roth R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol. 1974 Apr;118(1):8–14. doi: 10.1128/jb.118.1.8-14.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King N. J. The glucoamylase of Coniophora cerebella. Biochem J. 1967 Nov;105(2):577–583. doi: 10.1042/bj1050577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Küenzi M. T., Fiechter A. Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol. 1972;84(3):254–265. doi: 10.1007/BF00425203. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lee E. Y., Carter J. H., Nielsen L. D., Fischer E. H. Purification and properties of yeast amylo-1,6-glucosidase--oligo-1,4 leads to 1,4-glucantransferase. Biochemistry. 1970 May 26;9(11):2347–2355. doi: 10.1021/bi00813a019. [DOI] [PubMed] [Google Scholar]
  20. Lee E. Y., Nielsen L. D., Fischer E. H. A new glycogen-debranching enzyme system in yeast. Arch Biochem Biophys. 1967 Jul;121(1):245–246. doi: 10.1016/0003-9861(67)90032-x. [DOI] [PubMed] [Google Scholar]
  21. Lerch K., Fischer E. H. Amino acid sequence of two functional sites in yeast glycogen phosphorylase. Biochemistry. 1975 May 6;14(9):2009–2014. doi: 10.1021/bi00680a031. [DOI] [PubMed] [Google Scholar]
  22. Linnemans W. A., Boer P., Elbers P. F. Localization of acid phosphatase in Saccharomyces cerevisiae: a clue to cell wall formation. J Bacteriol. 1977 Aug;131(2):638–644. doi: 10.1128/jb.131.2.638-644.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MCLELLAN W. L., Jr, LAMPEN J. O. The acid phosphatase of yeast. Localization and secretion by protoplasts. Biochim Biophys Acta. 1963 Feb 12;67:324–326. doi: 10.1016/0006-3002(63)91832-8. [DOI] [PubMed] [Google Scholar]
  24. Magee P. T., Hopper A. K. Protein synthesis in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Sep;119(3):952–960. doi: 10.1128/jb.119.3.952-960.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nelson T. E., Kolb E., Larner J. Purification and properties of rabbit muscle amylo-1,6-glucosidase-oligo-1,4-1,4-transferase. Biochemistry. 1969 Apr;8(4):1419–1428. doi: 10.1021/bi00832a017. [DOI] [PubMed] [Google Scholar]
  26. Nelson T. E., White R. C., Watts T. E. The action of the glycogen debranching enzyme system in a muscle protein particle. Biochem Biophys Res Commun. 1972 Apr 14;47(1):254–259. doi: 10.1016/s0006-291x(72)80036-6. [DOI] [PubMed] [Google Scholar]
  27. PAZUR J. H., ANDO T. The hydrolysis of glucosyl oligosaccharides with alpha-D-(1-4) and alpha-D-(1-6) bonds by fungal amyloglucosidase. J Biol Chem. 1960 Feb;235:297–302. [PubMed] [Google Scholar]
  28. Piñon R., Salts Y., Simchen G. Nuclear and mitochondrial DNA synthesis during yeast sporulation. Exp Cell Res. 1974 Feb;83(2):231–238. doi: 10.1016/0014-4827(74)90334-6. [DOI] [PubMed] [Google Scholar]
  29. Roth R. Carbohydrate accumulation during the sporulation of yeast. J Bacteriol. 1970 Jan;101(1):53–57. doi: 10.1128/jb.101.1.53-57.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rothman L. B., Cabib E. Regulation of glycogen synthesis in the intact yeast cell. Biochemistry. 1969 Aug;8(8):3332–3341. doi: 10.1021/bi00836a030. [DOI] [PubMed] [Google Scholar]
  31. Rousseau P., Halvorson H. O. Preparation and storage of single spores of Saccharomyces cerevisiae. J Bacteriol. 1969 Dec;100(3):1426–1427. doi: 10.1128/jb.100.3.1426-1427.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. TREVELYAN W. E., HARRISON J. S. Studies on yeast metabolism. 7. Yeast carbohydrate fractions. Separation from nucleic acid, analysis, and behaviour during anaerobic fermentation. Biochem J. 1956 May;63(1):23–33. doi: 10.1042/bj0630023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taylor P. M., Whelan W. J. A new substrate for the detection of amylo-1,6-glucosidase, and its application to the study of glycogen-storage disease type 3. Arch Biochem Biophys. 1966 Feb;113(2):500–502. doi: 10.1016/0003-9861(66)90221-9. [DOI] [PubMed] [Google Scholar]
  34. WALKER G. J., WHELAN W. J. The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem J. 1960 Aug;76:264–268. doi: 10.1042/bj0760264. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES