Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jun;134(3):861–874. doi: 10.1128/jb.134.3.861-874.1978

Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens.

R J Broeze, C J Solomon, D H Pope
PMCID: PMC222333  PMID: 96102

Abstract

The effects of temperature on protein synthesis by Escherichia coli, a mesophile, and Pseudomonas fluorescens, a psychotroph, were investigated by using whole-cell and cell extract preparations. After shifts to 5 degrees C, protein was synthesized at a slowly decreasing rate for 1 h by both organisms, after which P. fluorescens synthesized protein at a new rate corresponding to its 5 degrees growth rate, in contrast to E. coli which did not synthesize protein at a measurable rate. In vitro protein-synthesizing systems using MS-2 RNA, endogenous mRNA, and purified polysomes were utilized to investigate initiation of translation at 5 degrees C. In these systems, P. fluorescens cell extracts synthesized protein at linear rates for up to 2 h at 5 degrees C, whereas E. coli cell extracts synthesized protein for only 25 min at 5 degrees C. The rates of polypeptide elongation, as tested by the incorporation of phenylalanine into polyphenylalanine by cell extract protein-synthesizing systems from both organisms, were identical over the range of 25 to 0 degrees C. The polysome profiles of E. coli whole cells shifted from 37 to 5 degrees C showed accumulation of 70S ribosomal particles and ribosomal subunits at the expense of polysomes. Similar experiements done with P. fluorescens resulted in polysome reformation at 5 degrees C. In vitro experiments demonstrated that the 70S ribosomal particles, which accumulated in E. coli at 5 degrees C, were capable of synthesizing protein in vitro in the absence of added mRNA. These in vivo and in vitro results suggest that incubation of E. coli at subminimal temperatures results in a block in initiation of translation causing polysomal runoff and the accumulation of 70S particles, some of which are 70S monosomes.

Full text

PDF
861

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A. Kinectics of beta-galactosidase synthesis in Escherichia coli at 5 C. J Bacteriol. 1975 Mar;121(3):907–916. doi: 10.1128/jb.121.3.907-916.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson D. E. Regulation of enzyme function. Annu Rev Microbiol. 1969;23:47–68. doi: 10.1146/annurev.mi.23.100169.000403. [DOI] [PubMed] [Google Scholar]
  3. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chliamovitch Y. P., Anderson W. A. Run off ribosomes of Escherichia coli: their accumulation in response to cold treatment and their dissociation during centrifugation. FEBS Lett. 1972 Jun 1;23(1):83–86. doi: 10.1016/0014-5793(72)80290-4. [DOI] [PubMed] [Google Scholar]
  5. Das H. K., Goldstein A. Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. J Mol Biol. 1968 Jan 28;31(2):209–226. doi: 10.1016/0022-2836(68)90440-3. [DOI] [PubMed] [Google Scholar]
  6. Engelhardt D. L., Webster R. E., Zinder N. D. Amber mutants and polarity in vitro. J Mol Biol. 1967 Oct 14;29(1):45–58. doi: 10.1016/0022-2836(67)90180-5. [DOI] [PubMed] [Google Scholar]
  7. Friedman H., Lu P., Rich A. An in vivo block in the initiation of protein synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:255–260. doi: 10.1101/sqb.1969.034.01.031. [DOI] [PubMed] [Google Scholar]
  8. Friedman H., Lu P., Rich A. Ribosomal subunits produced by cold sensitive initiation of protein synthesis. Nature. 1969 Aug 30;223(5209):909–913. doi: 10.1038/223909a0. [DOI] [PubMed] [Google Scholar]
  9. Friedman H., Lu P., Rich A. Temperature control of initiation of protein synthesis in Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):105–121. doi: 10.1016/0022-2836(71)90209-9. [DOI] [PubMed] [Google Scholar]
  10. Infante A. A., Baierlein R. Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1780–1785. doi: 10.1073/pnas.68.8.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kohler R. E., Ron E. Z., Davis B. D. Significance of the free 70 s ribosomes in Escherichia coli extracts. J Mol Biol. 1968 Aug 28;36(1):71–82. doi: 10.1016/0022-2836(68)90220-9. [DOI] [PubMed] [Google Scholar]
  12. Lodish H. F. Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis. J Mol Biol. 1970 Jun 28;50(3):689–702. doi: 10.1016/0022-2836(70)90093-8. [DOI] [PubMed] [Google Scholar]
  13. McEwen C. R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal Biochem. 1967 Jul;20(1):114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  14. Modolell J., Davis B. D. Rapid inhibition of polypeptide chain extension by streptomycin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1279–1286. doi: 10.1073/pnas.61.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morita R. Y. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pato M. L., Bennett P. M., von Meyenburg K. Messenger ribonucleic acid synthesis and degradation in Escherichia coli during inhibition of translation. J Bacteriol. 1973 Nov;116(2):710–718. doi: 10.1128/jb.116.2.710-718.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Phillips L. A., Hotham-Iglewski B., Franklin R. M. Polyribosomes of Escherichia coli. I. Effects of monovalent cations on the distribution of polysomes, ribosomes and ribosomal subunits. J Mol Biol. 1969 Mar 14;40(2):279–288. doi: 10.1016/0022-2836(69)90475-6. [DOI] [PubMed] [Google Scholar]
  18. Pope D. H., Connors N. T., Landau J. V. Stability of Escherichia coli polysomes at high hydrostatic pressure. J Bacteriol. 1975 Mar;121(3):753–758. doi: 10.1128/jb.121.3.753-758.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pope D. H., Smith W. P., Swartz R. W., Landau J. V. Role of bacterial ribosomes in barotolerance. J Bacteriol. 1975 Feb;121(2):664–669. doi: 10.1128/jb.121.2.664-669.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ron E. Z., Kohler R. E., Davis B. D. Polysomes extracted from Escherichia coli by freeze-thaw-lysozyme lysis. Science. 1966 Sep 2;153(3740):1119–1120. doi: 10.1126/science.153.3740.1119. [DOI] [PubMed] [Google Scholar]
  21. Ruscetti F. W., Jacobson L. A. Accumulation of 70S monoribosomes in Escherichia coli after energy source shift-down. J Bacteriol. 1972 Jul;111(1):142–151. doi: 10.1128/jb.111.1.142-151.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shaw M. K., Marr A. G., Ingraham J. L. Determination of the minimal temperature for growth of Escherichia coli. J Bacteriol. 1971 Feb;105(2):683–684. doi: 10.1128/jb.105.2.683-684.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart M. L., Grollman A. P., Huang M. T. Aurintricarboxylic acid: inhibitor of initiation of protein synthesis. Proc Natl Acad Sci U S A. 1971 Jan;68(1):97–101. doi: 10.1073/pnas.68.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Subramanian A. R. Glutaraldehyde fixation of ribosomes. Its use in the analysis of ribosome dissociation. Biochemistry. 1972 Jul 4;11(14):2710–2714. doi: 10.1021/bi00764a025. [DOI] [PubMed] [Google Scholar]
  25. Szer W. Cell-free protein synthesis at 0 degrees. An activating factor from ribosomes of a psychrophilic microorganism. Biochim Biophys Acta. 1970 Jul 16;213(1):159–170. [PubMed] [Google Scholar]
  26. Tai P. C., Wallace B. J., Herzog E. L., Davis B. D. Properties of initiation-free polysomes of Escherichia coli. Biochemistry. 1973 Feb;12(4):609–615. doi: 10.1021/bi00728a007. [DOI] [PubMed] [Google Scholar]
  27. Walker-Simmons M., Atkinson D. E. Functional capacities and the adenylate energy charge in Escherichia coli under conditions of nutritional stress. J Bacteriol. 1977 May;130(2):676–683. doi: 10.1128/jb.130.2.676-683.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Waterson J., Sopori M. L., Gupta S. L., Lengyel P. Apparent changes in ribosome conformation during protein synthesis. Centrifugation at high speed distorts initiation, pretranslocaton, and posttranslocation complexes to a different extent. Biochemistry. 1972 Apr 11;11(8):1377–1382. doi: 10.1021/bi00758a008. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES