Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jun;134(3):1002–1012. doi: 10.1128/jb.134.3.1002-1012.1978

In vitro synthesis and and regulation of the biotin enzymes of Escherichia coli K-12.

O Prakash, M A Eisenberg
PMCID: PMC222349  PMID: 350835

Abstract

The synthesis and regulation of two of the enzymes of the biotin operon of Escherichia coli, 7,8-diaminopelargonic acid aminotransferase and dethiobiotin synthetase, were studied in vitro in a coupled transcription-translation system. These enzymes are encoded by genes located on opposite strands of the divergently transcribed operon (A. Guha, Y. Saturen, and W. Szybalski, J. Mol. Biol. 56:53-62, 1971). The kinetics of synthesis of both the enzymes were determined and the efficiency of the system was 0.3 to 0.4% that of the in vivo rate of synthesis in derepressed cells. Guanosine 3'-diphosphate 5'-diphosphate at 0.2 mM concentration stimulated the synthesis of 7,8-diaminopelargonic acid aminotransferase two- to threefold but had no effect on dethiobiotin synthetase synthesis. Biotin, which was most effective as the corepressor in vivo, also functioned in vitro at physiological concentrations in conjunction with a crude repressor protein isolated from a lysogen carrying the bioR gene. However, the two strands showed differential repression. At a repressor concentration where 7,8-diaminopelargonic acid aminotransferase synthesis was completely repressed, the repression of dethiobiotin synthetase was only 20% and did not exceed 50% with increasing repressor concentrations. Although the exact reason for the partial repression remains to be resolved, our data clearly suggest that the biotin operon is regulated from two separate operators.

Full text

PDF
1002

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper M. D., Ames B. N. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J Bacteriol. 1975 Jan;121(1):259–266. doi: 10.1128/jb.121.1.259-266.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnbaum J., Pai C. H., Lichstein H. C. Biosynthesis of biotin in microorganisms. V. Control of vitamer production. J Bacteriol. 1967 Dec;94(6):1846–1853. doi: 10.1128/jb.94.6.1846-1853.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  5. Das Gupta C. K., Vrancic A., Guha A. Isolation and characterization of the biotin genes of Escherichia coli K-12. Gene. 1977 Jul;1(5-6):331–345. doi: 10.1016/0378-1119(77)90038-5. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg M. A., Krell K. Dethiobiotin synthesis from 7,8-diaminolargonic acid in cell-free extracts of a biotin auxotroph of Escherichia coli K-12. J Biol Chem. 1969 Oct 25;244(20):5503–5509. [PubMed] [Google Scholar]
  7. Eisenberg M. A., Maseda R. An early intermediate in the biosynthesis of biotin: Incorporation studies with [1,7-C(2)]pimelic acid. Biochem J. 1966 Dec;101(3):601–606. doi: 10.1042/bj1010601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisenberg M. A. Mode of action of alpha-dehydrobiotin, a biotin analogue. J Bacteriol. 1975 Jul;123(1):248–254. doi: 10.1128/jb.123.1.248-254.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenberg M. A., Stoner G. L. Biosynthesis of 7,8-diaminopelargonic acid, a biotin intermediate, from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine. J Bacteriol. 1971 Dec;108(3):1135–1140. doi: 10.1128/jb.108.3.1135-1140.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisenburg M. A., Mee B., Prakash O., Eisenburg M. R. Properties of alpha-dehydrobiotin-resistant mutants of Escherichia coli K-12. J Bacteriol. 1975 Apr;122(1):66–72. doi: 10.1128/jb.122.1.66-72.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guha A. Divergent orientation of transcription from the biotin locus of Escherichia coli. J Mol Biol. 1971 Feb 28;56(1):53–62. doi: 10.1016/0022-2836(71)90083-0. [DOI] [PubMed] [Google Scholar]
  12. Imamoto F., Ito J. Simultaneous initiation of transcription and translation at internal sites in the tryptophan operon of E. coli. Nature. 1968 Oct 5;220(5162):27–31. doi: 10.1038/220027a0. [DOI] [PubMed] [Google Scholar]
  13. Isturiz T., Wolf R. E., Jr In vitro synthesis of a constitutive enzyme of Escherichia coli, 6-phosphogluconate dehydrogenase. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4381–4384. doi: 10.1073/pnas.72.11.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ketner G., Campbel A. Operator and promoter mutations affecting divergent transcription in the bio gene cluster of Escherichia coli. J Mol Biol. 1975 Jul 25;96(1):13–27. doi: 10.1016/0022-2836(75)90179-5. [DOI] [PubMed] [Google Scholar]
  15. Kirschbaum J. B., Konrad E. B. Isolation of a specialized lambda transducing bacteriophage carrying the beta subunit gene for Escherichia coli ribonucleic acid polymerase. J Bacteriol. 1973 Nov;116(2):517–526. doi: 10.1128/jb.116.2.517-526.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krell K., Eisenberg M. A. The purification and properties of dethiobiotin synthetase. J Biol Chem. 1970 Dec 25;245(24):6558–6566. [PubMed] [Google Scholar]
  17. Krell K., Gottesman M. E., Parks J. S., Eisenberg M. A. Escape synthesis of the biotin operon in induced lambda b-2 lysogens. J Mol Biol. 1972 Jul 14;68(1):69–82. doi: 10.1016/0022-2836(72)90263-x. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Pai C. H., Yau H. C. Chromosomal location of mutations affecting the regualtion of biotin synthesis in Escherichia coli. Can J Microbiol. 1975 Jul;21(7):1116–1120. doi: 10.1139/m75-162. [DOI] [PubMed] [Google Scholar]
  20. Panchal C. J., Bagchee S. N., Guha A. Divergent orientation of transcription from the arginine gene ECBH cluster of Escherichia coli. J Bacteriol. 1974 Feb;117(2):675–680. doi: 10.1128/jb.117.2.675-680.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pouwels P. H., Van Rotterdam J. In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1786–1790. doi: 10.1073/pnas.69.7.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prakash O., Eisenberg M. A. Active transport of biotin in Escherichia coli K-12. J Bacteriol. 1974 Nov;120(2):785–791. doi: 10.1128/jb.120.2.785-791.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reiner A. M. Characterization of polynucleotide phosphorylase mutants of Escherichia coli. J Bacteriol. 1969 Mar;97(3):1437–1443. doi: 10.1128/jb.97.3.1437-1443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reiness G., Yang H. L., Zubay G., Cashel M. Effects of guanosine tetraphosphate on cell-free synthesis of Escherichia coli ribosomal RNA and other gene products. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2881–2885. doi: 10.1073/pnas.72.8.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
  26. Rose J. K., Yanofsky C. Interaction of the operator of the tryptophan operon with repressor. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3134–3138. doi: 10.1073/pnas.71.8.3134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosner J. L. Formation, induction, and curing of bacteriophage P1 lysogens. Virology. 1972 Jun;48(3):679–689. doi: 10.1016/0042-6822(72)90152-3. [DOI] [PubMed] [Google Scholar]
  28. Stoner G. L., Eisenberg M. A. Purification and properties of 7, 8-diaminopelargonic acid aminotransferase. J Biol Chem. 1975 Jun 10;250(11):4029–4036. [PubMed] [Google Scholar]
  29. Urm E., Yang H., Zubay G., Kelker N., Maas W. In vitro repression of n- -acetyl-L-ornithinase synthesis in Escherichia coli. Mol Gen Genet. 1973;121(1):1–7. doi: 10.1007/BF00353688. [DOI] [PubMed] [Google Scholar]
  30. Vrancic A., Guha A. Evidence of two operators in the biotin locus of Escherichia coli. Nat New Biol. 1973 Sep 26;245(143):106–108. doi: 10.1038/newbio245106a0. [DOI] [PubMed] [Google Scholar]
  31. Wetekam W., Staack K., Ehring R. DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli. Mol Gen Genet. 1971;112(1):14–27. doi: 10.1007/BF00266928. [DOI] [PubMed] [Google Scholar]
  32. Wilcox G., Meuris P., Bass R., Englesberg E. Regulation of the L-arabinose operon BAD in vitro. J Biol Chem. 1974 May 10;249(9):2946–2952. [PubMed] [Google Scholar]
  33. Zubay G. In vitro synthesis of protein in microbial systems. Annu Rev Genet. 1973;7:267–287. doi: 10.1146/annurev.ge.07.120173.001411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES