Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jun;134(3):1064–1073. doi: 10.1128/jb.134.3.1064-1073.1978

Regulation of cyclic AMP levels in Arthrobacter crystallopoietes and a morphogenetic mutant.

R W Hamilton, P E Kolenbrander
PMCID: PMC222356  PMID: 207674

Abstract

The extracellular levels of cyclic AMP (cAMP), cAMP phosphodiesterase activity, and adenylate cyclase activity were measured at various intervals during growth and morphogenesis of Arthrobacter crystallopoietes. There was a significant rise in the extracellular cAMP level at the onset of stationary phase, and this rise coincided with a decrease in intracellular cAMP. The phosphodiesterase activity measured in vitro increased in the early exponential phase of growth as intracellular cAMP decreased, and, conversely, prior to the onset of stationary phase the phosphodiesterase activity decreased as the intracellular cAMP levels increased. Adenylate cyclase activity was greater in cell extracts prepared from cells grown in a medium where morphogenesis was observed. Pyruvate stimulated adenylate cyclase activity in vitro. A morphogenetic mutant, able to grow only as spheres in all media tested, was shown to have altered adenylated cyclase activity, whereas no significant difference compared to the parent strain was detectable in either the phosphodiesterase activity or the levels of extracellular cAMP. The roles of the two enzymes, adenylate cyclase and phosphodiesterase, and excretion of cAMP are discussed with regard to regulation of intracellular cAMP levels and morphogenesis.

Full text

PDF
1064

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ENSIGN J. C., WOLFE R. S. NUTRITIONAL CONTROL OF MORPHOGENESIS IN ARTHROBACTER CRYSTALLOPIETES. J Bacteriol. 1964 Apr;87:924–932. doi: 10.1128/jb.87.4.924-932.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hamilton R. W., Achberger E. C., Kolenbrander P. E. Control of morphogenesis in Arthrobacter crystallopoiets: effect of cyclic adenosine 3',5'-monophosphate. J Bacteriol. 1977 Feb;129(2):874–879. doi: 10.1128/jb.129.2.874-879.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hirata M., Hayaishi O. Pyruvate dependent adenyl cyclase activity of Brevibacterium liquefaciens. Biochem Biophys Res Commun. 1965 Nov 22;21(4):361–365. doi: 10.1016/0006-291x(65)90202-0. [DOI] [PubMed] [Google Scholar]
  5. Ide M. Adenyl cyclase of Escherichia coli. Biochem Biophys Res Commun. 1969 Jul 7;36(1):42–46. doi: 10.1016/0006-291x(69)90646-9. [DOI] [PubMed] [Google Scholar]
  6. Khandelwal R. L., Hamilton I. R. Purification and properties of adenyl cyclase from Streptococcus salivarius. J Biol Chem. 1971 May 25;246(10):3297–3304. [PubMed] [Google Scholar]
  7. Krulwich T. A., Ensign J. C. Alteration of glucose metabolism of Arthrobacter crystallopoietes by compounds which induce sphere to rod morphogenesis. J Bacteriol. 1969 Feb;97(2):526–534. doi: 10.1128/jb.97.2.526-534.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lessie T., Neidhardt F. C. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J Bacteriol. 1967 Apr;93(4):1337–1345. doi: 10.1128/jb.93.4.1337-1345.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lynch T. J., Tallant E. A., Cheung W. Y. Brevibacterium liquefaciens adenylate cyclase and its in vivo stimulation by pyruvate. J Bacteriol. 1975 Dec;124(3):1106–1112. doi: 10.1128/jb.124.3.1106-1112.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ng F. M., Dawes E. A. Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J. 1973 Feb;132(2):129–140. doi: 10.1042/bj1320129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peterkofsky A. Cyclic nucleotides in bacteria. Adv Cyclic Nucleotide Res. 1976;7:1–48. [PubMed] [Google Scholar]
  13. Peterkofsky A., Gazdar C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2324–2328. doi: 10.1073/pnas.71.6.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phibbs P. V., Jr, Eagon R. G. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys. 1970 Jun;138(2):470–482. doi: 10.1016/0003-9861(70)90371-1. [DOI] [PubMed] [Google Scholar]
  15. Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saier M. H., Jr, Feucht B. U., McCaman M. T. Regulation of intracellular adenosine cyclic 3':5'-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide. J Biol Chem. 1975 Oct 10;250(19):7593–7601. [PubMed] [Google Scholar]
  17. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  18. Schechter S. L., Gold Z., Krulwich T. A. Enzyme induction and repression in Arthrobacter crystallopoietes. Arch Mikrobiol. 1972;85(4):280–293. doi: 10.1007/BF00549266. [DOI] [PubMed] [Google Scholar]
  19. Schultz G. General principles of assays for adenylate cyclase and guanylate cyclase activity. Methods Enzymol. 1974;38:115–125. doi: 10.1016/0076-6879(74)38018-4. [DOI] [PubMed] [Google Scholar]
  20. Siegel L. S., Hylemon P. B., Phibbs P. V., Jr Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J Bacteriol. 1977 Jan;129(1):87–96. doi: 10.1128/jb.129.1.87-96.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tao M., Lipmann F. Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci U S A. 1969 May;63(1):86–92. doi: 10.1073/pnas.63.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tao M. Preparation and properties of adenylate cyclase from Escherichia coli. Methods Enzymol. 1974;38:155–160. doi: 10.1016/0076-6879(74)38024-x. [DOI] [PubMed] [Google Scholar]
  23. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  24. Tiwari N. P., Campbell J. J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochim Biophys Acta. 1969 Dec 30;192(3):395–401. doi: 10.1016/0304-4165(69)90388-2. [DOI] [PubMed] [Google Scholar]
  25. Umezawa K., Takai K., Tsuji S., Kurashina Y., Hayaishi O. Adenylate cyclase from Brevibacterium liquefaciens. III. In situ regulation of adenylate cyclase by pyruvate. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4598–4601. doi: 10.1073/pnas.71.11.4598. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES