Abstract
Addition of cycloheximide to Neurospora crassa germlings growing in liquid medium caused an exponential loss of phosphate uptake activity (half-life, ca. 2 h). No loss of activity resulted when germlings were resuspended, at the time of cycloheximide addition, in medium of a substantially lower phosphate concentration. It is concluded that the phosphate uptake systems are not subject to rapid turnover.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beever R. E., Burns D. J. Adaptive changes in phosphate uptake by the fungus Neurospora crassa in response to phosphate supply. J Bacteriol. 1977 Nov;132(2):520–525. doi: 10.1128/jb.132.2.520-525.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns D. J., Beever R. E. Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. J Bacteriol. 1977 Nov;132(2):511–519. doi: 10.1128/jb.132.2.511-519.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsas L. J., Rosenberg L. E. Inhibition of amino Acid transport in rat kidney cortex by puromycin. Proc Natl Acad Sci U S A. 1967 Feb;57(2):371–378. doi: 10.1073/pnas.57.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grenson M., Crabeel M., Wiame J. M., Béchet J. Inhibition of protein synthesis and simulation of permease turnover in yeast. Biochem Biophys Res Commun. 1968 Feb 26;30(4):414–419. doi: 10.1016/0006-291x(68)90760-2. [DOI] [PubMed] [Google Scholar]
- Gross W., Ring K. Effect of chloramphenicol on active amino acid transport. FEBS Lett. 1969 Aug;4(4):319–322. doi: 10.1016/0014-5793(69)80265-6. [DOI] [PubMed] [Google Scholar]
- Horowitz N. H., Feldman H. M., Pall M. L. Derepression of tyrosinase synthesis in Neurospora by cycloheximide, actinomycin D, and puromycin. J Biol Chem. 1970 Jun 10;245(11):2784–2788. [PubMed] [Google Scholar]
- Hunter D. R., Segel I. H. Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch Biochem Biophys. 1971 May;144(1):168–183. doi: 10.1016/0003-9861(71)90466-8. [DOI] [PubMed] [Google Scholar]
- Lowendorf H. S., Bazinet G. F., Jr, Slayman C. W. Phosphate transport in Neurospora. Derepression of a high-affinity transport system during phosphorus starvation. Biochim Biophys Acta. 1975 May 21;389(3):541–549. doi: 10.1016/0005-2736(75)90164-9. [DOI] [PubMed] [Google Scholar]
- Lowendorf H. S., Slayman C. L., Slayman C. W. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low-affinity transport system. Biochim Biophys Acta. 1974 Dec 24;373(3):369–382. doi: 10.1016/0005-2736(74)90017-0. [DOI] [PubMed] [Google Scholar]
- Marzluf G. A. Control of the synthesis, activity, and turnover of enzymes of sulfur metabolism in Neurospora crassa. Arch Biochem Biophys. 1972 Jun;150(2):714–724. doi: 10.1016/0003-9861(72)90090-2. [DOI] [PubMed] [Google Scholar]
- Pall M. L., Kelly K. A. Specificity of transinhibition of amino acid transport in neurospora. Biochem Biophys Res Commun. 1971 Mar 5;42(5):940–947. doi: 10.1016/0006-291x(71)90521-3. [DOI] [PubMed] [Google Scholar]
- Ring K., Gross W., Heinz E. Negative feedback regulation of amino acid transport in Streptomyces hydrogenans. Arch Biochem Biophys. 1970 Mar;137(1):243–252. doi: 10.1016/0003-9861(70)90431-5. [DOI] [PubMed] [Google Scholar]
- Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. II. Metabolic control. J Bacteriol. 1968 Mar;95(3):959–966. doi: 10.1128/jb.95.3.959-966.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams S. K., 2nd, Hodson R. C. Transport of urea at low concentrations in Chlamydomonas reinhardi. J Bacteriol. 1977 Apr;130(1):266–273. doi: 10.1128/jb.130.1.266-273.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]