Abstract
Changes in the morphology of rat liver mitochondria brought about by different methods of isolation and the concomitant changes in ATP-ase activity were studied. The morphology was investigated with the electron microscope. It was found that the ATP-ase activity of the isolated mitochondria cannot be readily correlated with the morphology of the mitochondria. The ATP-ase found in these preparations was latent, resembling the enzyme described in mitochondria prepared in 0.25 M sucrose. In confirmation of earlier results the use of 0.88 M sucrose yielded preparations with a higher initial ATP-ase than did other methods. Preparation in 0.25 M sucrose resulted in round, swollen mitochondria of which 30 to 40 per cent appeared to have lost a substantial part of the mitochondrial matrix. Preparations in 0.44 to 0.88 M sucrose contained mainly rod-shaped mitochondria plus a small amount of another type of swollen mitochondria. The matrix of mitochondria isolated in 0.88 M sucrose was highly condensed. By the use of 0.44 M sucrose adjusted to pH 6.2 with citric acid, it was possible to isolate, for the first time, mitochondria closely resembling those in situ and containing latent ATP-ase.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COPENHAVER J. H., Jr, LARDY H. A. Oxidative phosphorylations; pathways and yield in mitochondrial preparations. J Biol Chem. 1952 Mar;195(1):225–238. [PubMed] [Google Scholar]
- DOUNCE A. L., WITTER R. F., MONTY K. J., PATE S., COTTONE M. A. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol. 1955 Mar;1(2):139–153. doi: 10.1083/jcb.1.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSS M. Effect of ethylenediamine tetraacetic acid on adenosinetriphosphatase activity. Science. 1953 Aug 21;118(3060):218–219. doi: 10.1126/science.118.3060.218. [DOI] [PubMed] [Google Scholar]
- JUDAH J. D. The action of 2:4-dinitrophenol on oxidative phosphorylation. Biochem J. 1951 Aug;49(3):271–285. doi: 10.1042/bj0490271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIELLEY W. W., KIELLEY R. K. A specific adenosinetriphosphatase of liver mitochondria. J Biol Chem. 1953 Jan;200(1):213–222. [PubMed] [Google Scholar]
- KIELLEY W. W., KIELLEY R. K. Myokinase and adenosinetriphosphatase in oxidative phosphorylation. J Biol Chem. 1951 Aug;191(2):485–500. [PubMed] [Google Scholar]
- KUFF E. L., SCHNEIDER W. C. Intracellular distribution of enzymes. XII. Biochemical heterogeneity of mitochondria. J Biol Chem. 1954 Feb;206(2):677–685. [PubMed] [Google Scholar]
- LAIRD A. K., NYGAARD O., RIS H., BARTON A. D. Separation of mitochondria into two morphologically and biochemically distinct types. Exp Cell Res. 1953 Sep;5(1):147–160. doi: 10.1016/0014-4827(53)90100-1. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
- LATTA H., HARTMANN J. F. Use of a glass edge in thin sectioning for electron microscopy. Proc Soc Exp Biol Med. 1950 Jun;74(2):436–439. doi: 10.3181/00379727-74-17931. [DOI] [PubMed] [Google Scholar]
- NOVIKOFF A. B., HECHT L., PODBER E., RYAN J. Phosphatases of rat liver. I. The dephosphorylation of adenosinetriphosphate. J Biol Chem. 1952 Jan;194(1):153–170. [PubMed] [Google Scholar]
- PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul;1(4):188–211. doi: 10.1177/1.4.188. [DOI] [PubMed] [Google Scholar]
- PALADE G. E. The fine structure of mitochondria. Anat Rec. 1952 Nov;114(3):427–451. doi: 10.1002/ar.1091140304. [DOI] [PubMed] [Google Scholar]
- PORTER K. R. Electron microscopy of basophilic components of cytoplasm. J Histochem Cytochem. 1954 Sep;2(5):346–375. doi: 10.1177/2.5.346. [DOI] [PubMed] [Google Scholar]
- POTTER V. R., SIEKEVITZ P., SIMONSON H. C. Latent adenosinetriphosphatase activity in resting rat liver mitochondria. J Biol Chem. 1953 Dec;205(2):893–908. [PubMed] [Google Scholar]
- SIEKEVITZ P., POTTER V. R. Intramitochondrial regulation of oxidative rate. J Biol Chem. 1953 Mar;201(1):1–13. [PubMed] [Google Scholar]
- SJOSTRAND F. S. Electron microscopy of mitochondria and cytoplasmic double membranes. Nature. 1953 Jan 3;171(4340):30–32. doi: 10.1038/171030a0. [DOI] [PubMed] [Google Scholar]
- WITTER R. F., COTTONE M. A., STOTZ E. Formation of acetoacetate from fatty acids by particulate systems of rat liver. J Biol Chem. 1954 Apr;207(2):671–678. [PubMed] [Google Scholar]
- WITTER R. F., NEWCOMB E. H., STOTZ E. Studies of the mechanism of action of dinitrophenol. J Biol Chem. 1953 May;202(1):291–303. [PubMed] [Google Scholar]
- de DUVE C., BERTHET J., BERTHET L., APPELMANS F. Permeability of mitochondria. Nature. 1951 Mar 10;167(4245):389–390. doi: 10.1038/167389a0. [DOI] [PubMed] [Google Scholar]