Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1955 Jul 25;1(4):271–278. doi: 10.1083/jcb.1.4.271

THE ULTRASTRUCTURE OF ADULT VERTEBRATE PERIPHERAL MYELINATED NERVE FIBERS IN RELATION TO MYELINOGENESIS

J David Robertson 1
PMCID: PMC2223817  PMID: 13242592

Abstract

Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.

Full Text

The Full Text of this article is available as a PDF (938.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAHR G. F. Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains. III. Exp Cell Res. 1954 Nov;7(2):457–479. doi: 10.1016/s0014-4827(54)80091-7. [DOI] [PubMed] [Google Scholar]
  2. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  3. DE ROBERTIS E. D., BENNETT H. S. A submicroscopic vesicular component of Schwann cells and nerve satellite cells. Exp Cell Res. 1954 May;6(2):543–545. doi: 10.1016/0014-4827(54)90209-8. [DOI] [PubMed] [Google Scholar]
  4. DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FINEAN J. B. The effects of osmium tetroxide fixation on the structure of myelin in sciatic nerve. Exp Cell Res. 1954 May;6(2):283–292. doi: 10.1016/0014-4827(54)90175-5. [DOI] [PubMed] [Google Scholar]
  6. GASSER H. S. Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J Gen Physiol. 1955 May 20;38(5):709–728. doi: 10.1085/jgp.38.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geren B. B., Schmitt F. O. THE STRUCTURE OF THE SCHWANN CELL AND ITS RELATION TO THE AXON IN CERTAIN INVERTEBRATE NERVE FIBERS. Proc Natl Acad Sci U S A. 1954 Sep;40(9):863–870. doi: 10.1073/pnas.40.9.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gutmann E., Young J. Z. The re-innervation of muscle after various periods of atrophy. J Anat. 1944 Jan;78(Pt 1-2):15–43. [PMC free article] [PubMed] [Google Scholar]
  9. HESS A., LANSING A. I. The fine structure of peripheral nerve fibers. Anat Rec. 1953 Oct;117(2):175–199. doi: 10.1002/ar.1091170205. [DOI] [PubMed] [Google Scholar]
  10. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROBERTSON J. D. Recent electron microscope observations on the ultrastructure of the crayfish median-to-motor giant synapse. Exp Cell Res. 1955 Feb;8(1):226–229. doi: 10.1016/0014-4827(55)90058-6. [DOI] [PubMed] [Google Scholar]
  12. SJOSTRAND F. S. Electron microscopy of mitochondria and cytoplasmic double membranes. Nature. 1953 Jan 3;171(4340):30–32. doi: 10.1038/171030a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES