Abstract
Malate synthases from a thermophilic Bacillus and Escherichia coli have been isolated in a high state of purity. Molecular weights of these two proteins determined in the native state and after denaturation in sodium dodecyl sulfate-mercaptoethanol show that the enzymes are monomeric. This conclusion is supported, for the thermophile enzyme, by the result of an electrophoretic analysis of that protein after treatment with dimethylsuberimidate and denaturation. The thermophilic Bacillus malate synthase is considerably more thermostable than its mesophilic counterparts from E. coli, Bacillus licheniformis, and Pseudomonas indigofera. It is, however, markedly labilized by an increase in the ionic strength of the medium brought about by the addition of 0.2 M potassium chloride or in pH above 9. Increased ionic strength has little effect on the thermostability of the mesophilic bacterial malate synthases. These observations provide strong support for the idea that monomeric proteins in thermophiles owe their unusual heat stability to the presence of salt bridges in their tertiary structure.
Full text
PDF![334](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/b02f2fcf0e86/jbacter00291-0048.png)
![335](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/ba782737420d/jbacter00291-0049.png)
![336](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/f29f32fee42e/jbacter00291-0050.png)
![337](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/2ccd31c7ba83/jbacter00291-0051.png)
![338](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/bd7273ece0be/jbacter00291-0052.png)
![339](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/10990e426c7a/jbacter00291-0053.png)
![340](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/b0aaa2950ba1/jbacter00291-0054.png)
![341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb63/222388/1d7d1cb8ecf2/jbacter00291-0055.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cazzulo J. J., Sundaram T. K., Kornberg H. L. Properties and regulation of pyruvate carboxylase from Bacillus stearothermophilus. Proc R Soc Lond B Biol Sci. 1970 Oct 13;176(1042):1–19. doi: 10.1098/rspb.1970.0030. [DOI] [PubMed] [Google Scholar]
- Chell R. M., Sundaram T. K. Isolation and characterization of isocitrate lyase and malate synthase from Bacillus stearothermophilus. Biochem Soc Trans. 1975;3(2):303–306. doi: 10.1042/bst0030303. [DOI] [PubMed] [Google Scholar]
- Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falmagne P., Wiame J. M. Purification et caractérisation partielle des deux malate synthases d'Escherichia coli. Eur J Biochem. 1973 Sep 3;37(3):415–424. doi: 10.1111/j.1432-1033.1973.tb03001.x. [DOI] [PubMed] [Google Scholar]
- Griffiths M. W., Sundaram T. K. Isocitrate lyase from a thermophilic Bacillus: effect of salts on enzyme activity. J Bacteriol. 1973 Dec;116(3):1160–1169. doi: 10.1128/jb.116.3.1160-1169.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
- Schmid G., Durchschlag H., Biedermann G., Eggerer H., Jaenicke R. Molecular structure of malate synthase and structural changes upon ligand binding to the enzyme. Biochem Biophys Res Commun. 1974 May 20;58(2):419–426. doi: 10.1016/0006-291x(74)90381-7. [DOI] [PubMed] [Google Scholar]
- Singleton R., Jr, Amelunxen R. E. Proteins from thermophilic microorganisms. Bacteriol Rev. 1973 Sep;37(3):320–342. doi: 10.1128/br.37.3.320-342.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundaram T. K., Cazzulo J. J., Kornberg H. L. Anaplerotic CO2 fixation in mesophilic and thermophilic bacilli. Biochim Biophys Acta. 1969 Nov 18;192(2):355–357. doi: 10.1016/0304-4165(69)90377-8. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K. Myo-inositol catabolism in Salmonella typhimiurium: enzyme repression dependent on growth history of organism. J Gen Microbiol. 1972 Nov;73(2):209–219. doi: 10.1099/00221287-73-2-209. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K. Physiological role of pyruvate carboxylase in a thermophilic bacillus. J Bacteriol. 1973 Feb;113(2):549–557. doi: 10.1128/jb.113.2.549-557.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
- Wilkinson S., Knowles J. R. A comparison of purified valyl-transfer ribonucleic acid synthetase from Bacillus stearothermophilus and from Escherichia coli. Biochem J. 1974 May;139(2):391–398. doi: 10.1042/bj1390391. [DOI] [PMC free article] [PubMed] [Google Scholar]