Abstract
Mutants of Pseudomonas aeruginosa were isolated that were acetamide-negative in growth phenotype at 41 degrees C and constitutive for amidase synthesis at 28 degrees C. Two mutants were derived from the magno-constitutive amidase mutant PAC111 (C11), and a third from a mutant that had enhanced inducibility by formamide, PAC153 (F6). The three temperature-sensitive mutants produced amidases with the same thermal stabilities as the wild-type enzyme. Cultures growing exponentially at 28 degrees C, synthesizing amidase constitutively, ceased amidase synthesis almost immediately on transfer to 41 degrees C. Cultures growing at 41 degrees C were transferred to 28 degrees C and had a lag of about 0.5 of a generation before amidase synthesis became detectable. Pulse-heating for 10 min at 45 degrees C of a culture growing exponentially at 28 degrees C resulted in a lag of about 0.5 of a generation before amidase synthesis recommenced after returning to 28 degrees C. Acetamide-negative mutants that were unable to synthesize amidase at any growth temperature were isolated from an inducible strain producing the mutant B amidase PAC398 (IB10). Two mutants were examined that gave revertants producing B amidase but with novel regulatory phenotypes. It is suggested that amidase synthesis is regulated by positive control exerted by gene amiR.
Full text
PDF![379](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/f32f2461e721/jbacter00291-0093.png)
![380](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/2633dc5b5aaa/jbacter00291-0094.png)
![381](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/c5fc45f98836/jbacter00291-0095.png)
![382](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/5d583a76512a/jbacter00291-0096.png)
![383](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/4ce3f15c0a43/jbacter00291-0097.png)
![384](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/30349ad08b42/jbacter00291-0098.png)
![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/66a6d90cd5f3/jbacter00291-0099.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/a2c443529b81/jbacter00291-0100.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/6e0806ec2a91/jbacter00291-0101.png)
![388](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/11b7a7ccd7a5/jbacter00291-0102.png)
![389](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/52ecd22416e0/jbacter00291-0103.png)
![390](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/06a1c672ebd7/jbacter00291-0104.png)
![391](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/4645b1826c03/jbacter00291-0105.png)
![392](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/222394/adbcedefc563/jbacter00291-0106.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRAMMAR W. J., CLARKE P. H. INDUCTION AND REPRESSION OF PSEUDOMONAS AERUGINOSA AMIDASE. J Gen Microbiol. 1964 Dec;37:307–319. doi: 10.1099/00221287-37-3-307. [DOI] [PubMed] [Google Scholar]
- Beckwith J., Rossow P. Analysis of genetic regulatory mechanisms. Annu Rev Genet. 1974;8:1–13. doi: 10.1146/annurev.ge.08.120174.000245. [DOI] [PubMed] [Google Scholar]
- Betz J. L., Brown J. E., Clarke P. H., Day M. Genetic analysis of amidase mutants of Pseudomonas aeruginosa. Genet Res. 1974 Jun;23(3):335–359. doi: 10.1017/s001667230001497x. [DOI] [PubMed] [Google Scholar]
- Betz J. L., Clarke P. H. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. J Gen Microbiol. 1972 Nov;73(1):161–174. doi: 10.1099/00221287-73-1-161. [DOI] [PubMed] [Google Scholar]
- Bloom F. R. Isolation and characterization of catabolite-resistant mutants in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1975 Mar;121(3):1085–1091. doi: 10.1128/jb.121.3.1085-1091.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom F. R., McFall E. Isolation and characterization of D-serine deaminase constitutive mutants by utilization of D-serine as sole carbon or nitrogen source. J Bacteriol. 1975 Mar;121(3):1078–1084. doi: 10.1128/jb.121.3.1078-1084.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom F. R., McFall E., Young M. C., Carothers A. M. Positive control in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1975 Mar;121(3):1092–1101. doi: 10.1128/jb.121.3.1092-1101.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brammar W. J., Clarke P. H., Skinner A. J. Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. J Gen Microbiol. 1967 Apr;47(1):87–102. doi: 10.1099/00221287-47-1-87. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Brown P. R., Clarke P. H. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. J Gen Microbiol. 1969 Aug;57(2):273–285. doi: 10.1099/00221287-57-2-273. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Clarke P. H. Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide. J Gen Microbiol. 1970 Dec;64(3):329–342. doi: 10.1099/00221287-64-3-329. [DOI] [PubMed] [Google Scholar]
- Englesberg E., Irr J., Power J., Lee N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol. 1965 Oct;90(4):946–957. doi: 10.1128/jb.90.4.946-957.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englesberg E., Wilcox G. Regulation: positive control. Annu Rev Genet. 1974;8:219–242. doi: 10.1146/annurev.ge.08.120174.001251. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., EGAN J. B., MONK M. Lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci. 1960 Aug;38:321–329. doi: 10.1038/icb.1960.34. [DOI] [PubMed] [Google Scholar]
- Heffernan L., Bass R., Englesberg E. Mutations affecting catabolite repression of the L-arabinose regulon in Escherichia coli B/r. J Bacteriol. 1976 Jun;126(3):1119–1131. doi: 10.1128/jb.126.3.1119-1131.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irr J., Englesberg E. Control of expression of the L-arabinose operon in temperature-sensitive mutants of gene araC in Escherichia coli B-r. J Bacteriol. 1971 Jan;105(1):136–141. doi: 10.1128/jb.105.1.136-141.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLY M., CLARKE P. H. An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol. 1962 Feb;27:305–316. doi: 10.1099/00221287-27-2-305. [DOI] [PubMed] [Google Scholar]
- McFall E. Role of adenosine 3',5'-cyclic monophosphate and its specific binding protein in the regulation of D-serine deaminase synthesis. J Bacteriol. 1973 Feb;113(2):781–785. doi: 10.1128/jb.113.2.781-785.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SADLER J. R., NOVICK A. THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. J Mol Biol. 1965 Jun;12:305–327. doi: 10.1016/s0022-2836(65)80255-8. [DOI] [PubMed] [Google Scholar]
- Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: isolation of promotor mutants. J Gen Microbiol. 1975 Sep;90(1):91–99. doi: 10.1099/00221287-90-1-91. [DOI] [PubMed] [Google Scholar]
- Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol. 1975 Sep;90(1):81–90. doi: 10.1099/00221287-90-1-81. [DOI] [PubMed] [Google Scholar]
- Wheelis L. The genetics of dissimilarity pathways in Pseudomonas. Annu Rev Microbiol. 1975;29:505–524. doi: 10.1146/annurev.mi.29.100175.002445. [DOI] [PubMed] [Google Scholar]
- Worsey M. J., Franklin F. C., Williams P. A. Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. J Bacteriol. 1978 Jun;134(3):757–764. doi: 10.1128/jb.134.3.757-764.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worsey M. J., Williams P. A. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications. J Bacteriol. 1977 Jun;130(3):1149–1158. doi: 10.1128/jb.130.3.1149-1158.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]